|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Atomic Fact Retrieval Task of PropSegmEnt.""" |
|
|
|
|
|
import csv |
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
_CITATION = """\ |
|
@article{chen2023subsentence, |
|
title={Sub-Sentence Encoder: Contrastive Learning of Propositional Semantic Representations}, |
|
author={Sihao Chen and Hongming Zhang and Tong Chen and Ben Zhou and Wenhao Yu and Dian Yu and Baolin Peng and Hongwei Wang and Dan Roth and Dong Yu}, |
|
journal={arXiv preprint arXiv:2311.04335}, |
|
year={2023}, |
|
URL = {https://arxiv.org/pdf/2311.04335.pdf} |
|
} |
|
|
|
@inproceedings{chen2023propsegment, |
|
title = "{PropSegmEnt}: A Large-Scale Corpus for Proposition-Level Segmentation and Entailment Recognition", |
|
author = "Chen, Sihao and Buthpitiya, Senaka and Fabrikant, Alex and Roth, Dan and Schuster, Tal", |
|
booktitle = "Findings of the Association for Computational Linguistics: ACL 2023", |
|
year = "2023", |
|
} |
|
""" |
|
|
|
|
|
|
|
_DESCRIPTION = """\ |
|
This contains the processed dataset for the atomic fact retrieval task of the "PropSegment" dataset. |
|
|
|
The task features a test set of 8,865 queries propositions. |
|
Each query proposition corresponds to 1-2 ground truth propositions from another document. |
|
In total, there are 43,299 target candidate propositions. |
|
Note that the query propositions are also included in the target set, so during evaluation, the query needs to be removed from the retrieved candidates. |
|
|
|
Check out more details in our paper -- https://arxiv.org/pdf/2311.04335.pdf. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/schen149/sub-sentence-encoder" |
|
|
|
_LICENSE = "CC-BY-4.0" |
|
|
|
|
|
|
|
_URLS = { |
|
"targets": { |
|
"test": "propsegment_targets_all.jsonl", |
|
}, |
|
"queries": { |
|
"test": "propsegment_queries_all.jsonl", |
|
} |
|
} |
|
|
|
_CONFIG_TO_FILENAME = { |
|
"targets": "propsegment_targets_all", |
|
"queries": "propsegment_queries_all" |
|
} |
|
|
|
class PropSegmentRetrieval(datasets.GeneratorBasedBuilder): |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="targets", version=VERSION, description="Query propositions of the atomic fact retrieval task"), |
|
datasets.BuilderConfig(name="queries", version=VERSION, description="Target candidate propositions of the atomic fact retrieval task"), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "queries" |
|
|
|
def _info(self): |
|
if self.config.name == "queries": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"sentence_text": datasets.Value("string"), |
|
"spans": datasets.Value("string"), |
|
"label": datasets.features.Sequence(datasets.Value("string")), |
|
"tokens": datasets.features.Sequence( |
|
{"text": datasets.Value("string"), "character_offset_of_token_in_sentence": datasets.Value("int32"),} |
|
), |
|
"token_indices": datasets.features.Sequence(datasets.Value("int32")) |
|
} |
|
) |
|
else: |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"sentence_text": datasets.Value("string"), |
|
"spans": datasets.Value("string"), |
|
"tokens": datasets.features.Sequence( |
|
{"text": datasets.Value("string"), "character_offset_of_token_in_sentence": datasets.Value("int32"),} |
|
), |
|
"token_indices": datasets.features.Sequence(datasets.Value("int32")) |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
|
|
|
|
|
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
config_name = self.config.name |
|
urls = _URLS[config_name] |
|
|
|
data_dir = dl_manager.download(urls) |
|
file_prefix = _CONFIG_TO_FILENAME[config_name] |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"filepath": data_dir["test"], |
|
"split": "test" |
|
}, |
|
), |
|
] |
|
|
|
|
|
def _generate_examples(self, filepath, split): |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
for key, row in enumerate(f): |
|
data = json.loads(row) |
|
if self.config.name == "queries": |
|
yield key, { |
|
"id": data["id"], |
|
"sentence_text": data["sentence_text"], |
|
"spans": data["spans"], |
|
"label": data["label"], |
|
"tokens": data["tokens"], |
|
"token_indices": data["token_indices"], |
|
} |
|
else: |
|
yield key, { |
|
"id": data["id"], |
|
"sentence_text": data["sentence_text"], |
|
"spans": data["spans"], |
|
"tokens": data["tokens"], |
|
"token_indices": data["token_indices"], |
|
} |