Update mmod2.py
Browse files
mmod2.py
CHANGED
@@ -47,35 +47,47 @@ class Mmod2(datasets.GeneratorBasedBuilder):
|
|
47 |
# task_templates=[datasets.ImageClassification(image_column="image", label_column="label")],
|
48 |
)
|
49 |
|
50 |
-
def _split_generators(self, dl_manager):
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
-
|
60 |
-
|
61 |
|
62 |
return [
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
},
|
70 |
-
),
|
71 |
-
datasets.SplitGenerator(
|
72 |
-
name=datasets.Split.VALIDATION,
|
73 |
-
gen_kwargs={
|
74 |
-
"split_key": "validation",
|
75 |
-
"images": validation_files,
|
76 |
-
"metadata_path": split_metadata_paths[1],
|
77 |
-
},
|
78 |
-
),
|
79 |
]
|
80 |
|
81 |
def _generate_examples(self, images, metadata_path=None, split_key="train"):
|
|
|
47 |
# task_templates=[datasets.ImageClassification(image_column="image", label_column="label")],
|
48 |
)
|
49 |
|
50 |
+
# def _split_generators(self, dl_manager):
|
51 |
+
# # archive_path = dl_manager.download(_BASE_URL)
|
52 |
+
# print("0000000")
|
53 |
+
# split_metadata_paths = dl_manager.download(_METADATA_URLS)
|
54 |
+
# # print(f"{split_metadata_paths = }")
|
55 |
+
# self.data_dir = dl_manager.download_and_extract(_BASE_URL)
|
56 |
+
# with open(split_metadata_paths[0], encoding="utf-8") as f:
|
57 |
+
# train_files = set(f.read().split("\n"))
|
58 |
+
|
59 |
+
# with open(split_metadata_paths[1], encoding="utf-8") as f:
|
60 |
+
# validation_files = set(f.read().split("\n"))
|
61 |
+
|
62 |
+
# return [
|
63 |
+
# datasets.SplitGenerator(
|
64 |
+
# name=datasets.Split.TRAIN,
|
65 |
+
# gen_kwargs={
|
66 |
+
# "split_key": "train",
|
67 |
+
# "images": train_files,
|
68 |
+
# "metadata_path": split_metadata_paths[0],
|
69 |
+
# },
|
70 |
+
# ),
|
71 |
+
# datasets.SplitGenerator(
|
72 |
+
# name=datasets.Split.VALIDATION,
|
73 |
+
# gen_kwargs={
|
74 |
+
# "split_key": "validation",
|
75 |
+
# "images": validation_files,
|
76 |
+
# "metadata_path": split_metadata_paths[1],
|
77 |
+
# },
|
78 |
+
# ),
|
79 |
+
# ]
|
80 |
|
81 |
+
def _split_generators(self, dl_manager):
|
82 |
+
archive = dl_manager.download(_DATA_URL)
|
83 |
|
84 |
return [
|
85 |
+
datasets.SplitGenerator(
|
86 |
+
name=datasets.Split.TRAIN, gen_kwargs={"images": dl_manager.iter_archive(archive), "split": "train"}
|
87 |
+
),
|
88 |
+
datasets.SplitGenerator(
|
89 |
+
name=datasets.Split.VALIDATION, gen_kwargs={"images": dl_manager.iter_archive(archive), "split": "validation"}
|
90 |
+
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
]
|
92 |
|
93 |
def _generate_examples(self, images, metadata_path=None, split_key="train"):
|