Datasets:
File size: 1,869 Bytes
9cff1e5 bb38caf 9cff1e5 bb38caf b20e4b8 7f1b007 b20e4b8 9cff1e5 3271545 9cff1e5 3271545 9cff1e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
language:
- en
license: mit
task_categories:
- text-generation
- feature-extraction
pretty_name: AI/Technology Articles
tags:
- temporal series data
- language data
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
dataset_info:
features:
- name: id
dtype: int64
- name: year
dtype: int64
- name: title
dtype: string
- name: url
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 180820047
num_examples: 17092
download_size: 81702923
dataset_size: 180820047
---
# AI/Tech Dataset
This dataset is a collection of AI/tech articles scraped from the web.
It's hosted on [HuggingFace Datasets](https://huggingface.co/datasets/siavava/ai-tech-articles), so it is easier to load in and work with.
## To load the dataset
### 1. Install [HuggingFace Datasets](https://huggingface.co/docs/datasets/installation.html)
```bash
pip install datasets
```
### 2. Load the dataset
```python
from datasets import load_dataset
dataset = load_dataset("siavava/ai-tech-articles")
# optionally, convert it to a pandas dataframe:
df = dataset["train"].to_pandas()
```
You do not need to clone this repo.
HuggingFace will download the dataset for you, the first time that you load it,
and cache it locally so it does not need to re-download it again
(unless it detects a change upstream).
## File Structure
- [`analytics.ipynb`](analytics.ipynb) - Notebook containing some details about the dataset.
- [`example.ipynb`](example.ipynb) - A minimal notebook that loads in the dataset and converts to Pandas.
- [`raw.csv`](raw.csv) - The raw data, in CSV format.
- `data/*.parquet`- compressed [parquet](https://www.databricks.com/glossary/what-is-parquet) containing the data.
- For raw text files, see the [scraper repo](https://github.com/siavava/scrape.hs) on GitHub.
|