File size: 4,149 Bytes
96f6baa
 
 
 
 
 
 
 
 
513303f
 
 
96f6baa
 
 
 
 
 
 
 
 
513303f
96f6baa
 
 
 
 
 
 
4fd5fa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c961423
4fd5fa6
c961423
 
 
4fd5fa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bcc84f
4fd5fa6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef16617
4fd5fa6
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
---
annotations_creators:
- other
language:
- sv
language_creators:
- other
multilinguality:
- monolingual
pretty_name: >-
  A standardized suite for evaluation and analysis of Swedish natural language
  understanding systems.
size_categories:
- unknown
source_datasets: []
task_categories:
- multiple-choice
- text-classification
- question-answering
- sentence-similarity
- token-classification
- summarization
task_ids:
- sentiment-analysis
- acceptability-classification
- closed-domain-qa
- word-sense-disambiguation
- coreference-resolution
---
# Dataset Card for [Dataset Name]

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [The official homepage of Språkbanken](https://spraakbanken.gu.se/resurser/superlim/)
- **Repository:**
- **Paper:**[SwedishGLUE – Towards a Swedish Test Set for Evaluating Natural Language Understanding Models](https://gup.ub.gu.se/publication/299130?lang=sv)
- **Leaderboard:** [To be implemented]
- **Point of Contact:**[[email protected]]([email protected])

### Dataset Summary

SuperLim 2.0 is a continuation of SuperLim 1.0, which aims for a standardized suite for evaluation and analysis of Swedish natural language understanding systems. The projects is inspired by the GLUE/SuperGLUE projects from which the name is derived: "lim" is the Swedish translation of "glue".   

### Supported Tasks and Leaderboards

[More Information Needed] 

### Languages

Swedish

## Dataset Structure

### Data Instances

[More Information Needed]

### Data Fields

[More Information Needed]

### Data Splits

Most datasets have a train, dev and test split. However, there are a few (`supersim`, `sweanalogy` and `swesat-synonyms`) who only have a train and test split. The diagnostic tasks `swediagnostics` and `swewinogender` only have a test split, but they could be evaluated on models trained on `swenli` since they are also NLI-based.

## Dataset Creation


### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]

### Citation Information

[More Information Needed]

### Contributions

To cite as a whole, use the standard reference. If you use or reference individual resources, cite the references specific for these resources:
 
Standard reference:

To appear in EMNLP 2023, citation will come soon.

Dataset references:

[More information needed]

Thanks to [Felix Morger](https://github.com/felixhultin) for adding this dataset.