--- dataset_info: - config_name: default features: - name: 1m sequence: sequence: sequence: sequence: uint8 - name: chm sequence: sequence: sequence: sequence: uint8 - name: rgb sequence: sequence: sequence: sequence: uint8 - name: metadata struct: - name: bounds sequence: float64 - name: epsg dtype: string - name: siteID dtype: string - name: timestamp sequence: string splits: - name: train num_bytes: 303349477315 num_examples: 35501 download_size: 240895951943 dataset_size: 303349477315 - config_name: satellogic features: - name: 1m sequence: sequence: sequence: sequence: uint8 - name: rgb sequence: sequence: sequence: sequence: uint8 - name: metadata struct: - name: bounds sequence: float64 - name: crs sequence: string - name: timestamp sequence: string splits: - name: train num_bytes: 3675346598134 num_examples: 2967663 download_size: 3528764568282 dataset_size: 3675346598134 - config_name: sentinel_1 features: - name: 10m sequence: sequence: sequence: sequence: uint8 - name: metadata dtype: string splits: - name: train num_bytes: 1762041095796 num_examples: 1049466 download_size: 1487586838960 dataset_size: 1762041095796 - config_name: sentinel_2 features: - name: 10m sequence: sequence: sequence: sequence: uint8 - name: 20m sequence: sequence: sequence: sequence: uint8 - name: 40m sequence: sequence: sequence: sequence: uint8 - name: rgb sequence: sequence: sequence: sequence: uint8 - name: scl sequence: sequence: sequence: sequence: uint8 - name: metadata struct: - name: s3Path sequence: string - name: solarAngles sequence: string - name: tileGeometry sequence: string - name: timestamp sequence: string - name: viewIncidenceAngles sequence: string splits: - name: train num_bytes: 14967110614854 download_size: 12926621389874 dataset_size: 14967110614854 configs: - config_name: default data_files: - split: train path: data/train-* - config_name: satellogic data_files: - split: train path: satellogic/**/train-* - config_name: sentinel_1 data_files: - split: train path: sentinel_1/train-* - config_name: sentinel_2 data_files: - split: train path: sentinel_2/**/train-* --- # EarthView dataset ![EarthView]() ## Overview The **EarthView** Dataset is a comprehensive collection of multispectral earth imagery. The dataset is divided into four distinct subsets sourced from Satellogic, Sentinel-1, Sentinel-2 (coming soon), and NEON imagers, each providing unique data. ## Dataset Viewer Check the [EarthView Dataset Viewer](https://huggingface.co/spaces/satellogic/EarthView-Viewer) and [it's code](https://huggingface.co/spaces/satellogic/EarthView-Viewer/tree/main) for examples on how to access the images and navigate the dataset. [![ ](viewer.png 'EarthView Dataset Viewer')](https://satellogic-earthview-viewer.hf.space/) - [EarthView dataset](#earthview-dataset) - [Overview](#overview) - [Dataset Viewer](#dataset-viewer) - [Data Sources](#data-sources) - [Available Subsets](#available-subsets) - [Data Format](#data-format) - [Satellogic](#satellogic) - [Metadata](#metadata) - [Images](#images) - [Example (Jupyter Notebook)](#example-jupyter-notebook) - [Example (iterate)](#example-iterate) - [Sentinel-1](#sentinel-1) - [Metadata](#metadata-1) - [Images](#images-1) - [Example (Jupyter Notebook)](#example-jupyter-notebook-1) - [Neon](#neon) - [Metadata](#metadata-2) - [Images](#images-2) - [Example (Jupyter Notebook)](#example-jupyter-notebook-2) - [Sentinel 2 (Coming Soon)](#sentinel-2-coming-soon) - [Known Issues](#known-issues) ## Data Sources Each subset (AKA configuration) in the EarthView dataset includes samples representing specific patches of the Earth. Each source (satellite type) has different characteristics, so the details for the samples in each of the subsets are subtly different. We provide a very simple library to access the images in the subsets. ## Available Subsets | Name | Samples | Unique locations | Products | Image Resolution | |--|--|--|--|--| | Satellogic | ~6 million | ~3 million | RGB | 1m | | | | | NIR (Near Infrared) | 1m | Neon | ~1 million | ~0.3 million | RGB | 0.1m | | | | | Canopy Height Model (Lidar)| 1m | | | | Hyperspectral (369 bands) | 1m | Sentinel-1 | ~5.2 million | ~1 million | SAR (mapped to RGB) | 10m (from 20m) | Sentinel-2 | ~10 million | ~1 million | RGB | 10m | | | | NIR | 10m | | | | NIR / Red Edge / SWIR | 20m | | | | Scene Classification Layer | 20m | | | | Coastal-Aerosol / Water Vapour / Cirrus | 40 (from 60m) ## Data Format Each subset has some peculiarities and a specific data format in the dataset. Each item (sample) in the dataset is a dictionary with a `metadata` field and one or more entries for the different image products available, such as `rgb`, `chm`, `1m`, `10m` (see below). All of the image fields are 4D arrays where dimensions are REVISITS, BANDS, HEIGHT, WIDTH. We encourage you to use the supplied [`earthview` library](https://huggingface.co/spaces/satellogic/EarthView-Viewer/blob/main/earthview.py) to simplify accessing the dataset, metadata and images. (For now, download the single python file and place in the same directory as your scripts, or in Python's path) Bellow you'll find details for each subset ### Satellogic #### Metadata | key | description | |--|--| | `bounds` | [x_min, y_min, x_max, y_max] (bottom-left corner and top-right corner coordinates in (easting, northing) format, WGS 84 / UTM). | | `[178191.0, 8248444.0, 178575.0, 8248828.0]` | | `[[171507.0, 7874670.0, 171891.0, 7875054.0], [174795.0, 7878747.0, 175179.0, 7879131.0]]` | `crs` | EPSG code | | `['EPSG:32723']` | `timestamp` | list of timestamps corresponding to the capture dates (only date is valid) | | `['2022-07-21T00:00:00']` | | `['2022-07-21T00:00:00', '2022-07-25T00:00:00']` |`count` | Number of re-visits for the location (not present in the dataset, generated by `items_to_images()`) | | 1 #### Images Satellogic images are captured with Satellogic's MarkIV satellite fleet. The payload produces RGB and NIR images at 1m native resolution (no PAN sharpening). Each sample in the dataset has 1 or 2 re-visits per location. | key | Product | Image Resolution | Size (pixels) | Bands | Re-samples | |--|--|--|--|--|--| | rgb | RGB | 1m | 384 x 384 | 3 | 1 or 2 | | 1m | NIR | 1m | 384 x 384 | 1 | 1 or 2 | #### Example (Jupyter Notebook)
```python import numpy as np import earthview as ev data = ev.load_dataset("satellogic", shards=[10]) # shard is optional sample = next(iter(data)) print(sample.keys()) print(np.array(sample['rgb']).shape) # RGB Data print(np.array(sample['1m']).shape) # NIR Data ```
``` dict_keys(['1m', 'rgb', 'metadata']) (1, 3, 384, 384) (1, 1, 384, 384) ```
```python sample = ev.item_to_images("satellogic", sample) display(sample) display(*sample["rgb"]) display(*sample["1m"]) ```
``` {'1m': [], 'rgb': [], 'metadata': {'bounds': [[178191.0, 8248444.0, 178575.0, 8248828.0]], 'crs': ['EPSG:32723'], 'timestamp': ['2022-08-13T00:00:00'], 'count': 1}} ```
![Satellogic RGB](satellogic-rgb.png) ![Satellogic RGB](satellogic-nir.png) #### Example (iterate)
```python from itertools import islice import earthview as ev data = ev.load_dataset("satellogic", shards=[10]) # shard is optional datai = iter(data) for sample in islice(datai, 10): sample = ev.item_to_images("satellogic", sample) print(sample["metadata"]["bounds"]) sample["rgb"][0].show() ```
### Sentinel-1 #### Metadata | key | description | |--|--| | `type` | `'Polygon'` Indicates the `coordinates` are the vertices of a Polygon | `coordinates` | Five coordinates of a closed Polygon. | | `[[[434520.0, 8715520.0], [438360.0, 8715520.0], [438360.0, 8711680.0], [434520.0, 8711680.0], [434520.0, 8715520.0]]]` | `crs` | EPSG code | | `'epsg:32736'` |`count` | Number of re-visits for the location (not present in the dataset, generated by `items_to_images()`) | | 6 #### Images Sentinel-1 carries a Synthetic Aperture Radar (SAR) payload. The data (imagery) produced has two channels, for vertical and horizontal polarization. The data in the dataset contains just the two channels, the images returned by `item_to_images()` implements a [standard mapping](https://gis.stackexchange.com/questions/400726/creating-composite-rgb-images-from-sentinel-1-channels) to return RGB images. (see the example below). Samples in the dataset contain varied numbers of re-visits per location. | key | Product | Image Resolution | Size (pixels) | Bands | Re-samples | |--|--|--|--|--|--| | 10m | RGB | 10m | 384 x 384 | 3 | 1 or 2 | #### Example (Jupyter Notebook)
```python import numpy as np import earthview as ev # data = ev.load_dataset("sentinel_1", shards=[88]) # shard is optional data = ev.load_parquet("dataset/sentinel_1/train-00088-of-01763.parquet") sample = next(iter(data)) print(sample.keys()) print(np.array(sample['rgb']).shape) # RGB Data print(np.array(sample['10m']).shape) # NIR Data ```
``` dict_keys(['10m', 'metadata']) (6, 2, 384, 384) ```
```python sample = ev.item_to_images("sentinel_1", sample) display(sample) display(*sample["10m"][:2]) ```
``` {'10m': [, , , , , ], 'metadata': {'type': 'Polygon', 'crs': 'epsg:32736', 'coordinates': [[[434520.0, 8715520.0], [438360.0, 8715520.0], [438360.0, 8711680.0], [434520.0, 8711680.0], [434520.0, 8715520.0]]], 'count': 6}} ```
![Sentinel-1 RGB](sentinel_1-0.png) ![Sentinel-1 RGB](sentinel_1-1.png) ### Neon In the dataset, the subset/configuration for NEON is called `default`, but when using the earthview library you should call it `neon`. #### Metadata | key | description | |--|--| | `bounds` | [x_min, y_min, x_max, y_max] (bottom-left corner and top-right corner coordinates in (easting, northing). | | `[-82.04138011662944, 29.634596313943526, -82.04071312100113, 29.635179014437973]` | `epsg` | EPSG code | | `'EPSG:32617'` (this is an error, coordinates are actually `'ESPG:4326'`, the library (earthview) solves it) | `timestamp` | list of timestamps corresponding to the capture dates (only date is valid) | | `['2018-01-01T00:00:00', '2019-01-01T00:00:00', '2021-01-01T00:00:00']` | `siteID` | `'OSBS'` for Ordway-Swisher Biological Station |`count` | Number of re-visits for the location (not present in the dataset, generated by `items_to_images()`) | | 3 #### Images The NEON subset is composed of very high resolution RGB images at 0.1m, 1m hyperspectral data (369 bands), and 1m Canopy Height Model out of a LIDAR sensor. Every sample in the dataset contains 3 re-visits. | key | Product | Image Resolution | Size (pixels) | Bands | Re-samples | |--|--|--|--|--|--| | rgb | RGB | 0.1m | 640 x 640 | 3 | 3 | | chm | Canopy Height Model | 1m | 64 x 64 | 1 | 3 | | 1m | Hyperspectral | 1m | 64 x 64 | 369 | 3 | When using `item_to_images()` the Hyperspectral images are mapped, from the 369 bands to RGB using a meaningless mapping. Please, don't use it for anything else than an example. #### Example (Jupyter Notebook)
```python import numpy as np import earthview as ev data = ev.load_dataset("neon", shards=[100]) # shard is optional # data = ev.load_parquet("neon", batch_size = 10) sample = next(iter(data)) print(sample.keys()) print(np.array(sample['rgb']).shape) # RGB Data print(np.array(sample['chm']).shape) # Canopy Height print(np.array(sample['1m']).shape) # Hyperspectral ```
``` dict_keys(['1m', 'chm', 'rgb', 'metadata']) (3, 3, 640, 640) (3, 1, 64, 64) (3, 369, 64, 64) ```
```python sample = ev.item_to_images("neon", sample) display(sample) display(sample["rgb"][0]) display(sample["1m"][0]) display(sample["chm"][0]) ```
``` {'1m': [, , ], 'chm': [, , ], 'rgb': [, , ], 'metadata': {'bounds': [-82.04138011662944, 29.634596313943526, -82.04071312100113, 29.635179014437973], 'epsg': 'ESPG:4326', 'siteID': 'OSBS', 'timestamp': ['2018-01-01T00:00:00', '2019-01-01T00:00:00', '2021-01-01T00:00:00'], 'count': 3}} ```
![NEON RGB](neon-2-rgb.png) ![NEON Canopy Height](neon-2-chm.png) ![NEON Hyperspectral meaningless mapping](neon-2-1m.png) ### Sentinel 2 (Coming Soon) Check the [EarthView Dataset Viewer](https://huggingface.co/spaces/satellogic/EarthView-Viewer) and [it's code](https://huggingface.co/spaces/satellogic/EarthView-Viewer/tree/main) to get an idea on how to use it. ## Known Issues * The time component of timestamps is not correct. * Bounds for some images is not correct. We are evaluating what has happened.. The new version of Satellogic data has correct bounds. We intend to update the dataset to fix issues when possible