Datasets:
File size: 9,578 Bytes
7d5136d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from pathlib import Path
from typing import Any, Dict, Iterator, List, Optional, Tuple, Union
import datasets
from datasets.data_files import DataFilesDict
from datasets.download.download_manager import ArchiveIterable, DownloadManager
from datasets.features import Features
from datasets.info import DatasetInfo
# Typing
_TYPING_BOX = Tuple[float, float, float, float]
_CITATION = """\
@article{DBLP:journals/corr/LinMBHPRDZ14,
author = {Tsung{-}Yi Lin and
Michael Maire and
Serge J. Belongie and
Lubomir D. Bourdev and
Ross B. Girshick and
James Hays and
Pietro Perona and
Deva Ramanan and
Piotr Doll{\'{a}}r and
C. Lawrence Zitnick},
title = {Microsoft {COCO:} Common Objects in Context},
journal = {CoRR},
volume = {abs/1405.0312},
year = {2014},
url = {http://arxiv.org/abs/1405.0312},
archivePrefix = {arXiv},
eprint = {1405.0312},
timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
_DESCRIPTION = """\
This dataset contains all COCO 2017 images and annotations split in training (118287 images) \
and validation (5000 images).
"""
_HOMEPAGE = "https://cocodataset.org"
_URLS = {
"annotations": "http://images.cocodataset.org/annotations/annotations_trainval2017.zip",
"train": "http://images.cocodataset.org/zips/train2017.zip",
"val": "http://images.cocodataset.org/zips/val2017.zip",
}
_SPLITS = ["train", "val"]
_PATHS = {
"annotations": {
"train": Path("annotations/instances_train2017.json"),
"val": Path("annotations/instances_val2017.json"),
},
"images": {
"train": Path("train2017"),
"val": Path("val2017"),
},
}
_CLASSES = [
"None",
"person",
"bicycle",
"car",
"motorcycle",
"airplane",
"bus",
"train",
"truck",
"boat",
"traffic light",
"fire hydrant",
"street sign",
"stop sign",
"parking meter",
"bench",
"bird",
"cat",
"dog",
"horse",
"sheep",
"cow",
"elephant",
"bear",
"zebra",
"giraffe",
"hat",
"backpack",
"umbrella",
"shoe",
"eye glasses",
"handbag",
"tie",
"suitcase",
"frisbee",
"skis",
"snowboard",
"sports ball",
"kite",
"baseball bat",
"baseball glove",
"skateboard",
"surfboard",
"tennis racket",
"bottle",
"plate",
"wine glass",
"cup",
"fork",
"knife",
"spoon",
"bowl",
"banana",
"apple",
"sandwich",
"orange",
"broccoli",
"carrot",
"hot dog",
"pizza",
"donut",
"cake",
"chair",
"couch",
"potted plant",
"bed",
"mirror",
"dining table",
"window",
"desk",
"toilet",
"door",
"tv",
"laptop",
"mouse",
"remote",
"keyboard",
"cell phone",
"microwave",
"oven",
"toaster",
"sink",
"refrigerator",
"blender",
"book",
"clock",
"vase",
"scissors",
"teddy bear",
"hair drier",
"toothbrush",
"hair brush",
]
def round_box_values(box, decimals=2):
return [round(val, decimals) for val in box]
class COCOHelper:
"""Helper class to load COCO annotations"""
def __init__(self, annotation_path: Path, images_dir: Path) -> None:
with open(annotation_path, "r") as file:
data = json.load(file)
self.data = data
dict_id2annot: Dict[int, Any] = {}
for annot in self.annotations:
dict_id2annot.setdefault(annot["image_id"], []).append(annot)
# Sort by id
dict_id2annot = {
k: list(sorted(v, key=lambda a: a["id"])) for k, v in dict_id2annot.items()
}
self.dict_path2annot: Dict[str, Any] = {}
self.dict_path2id: Dict[str, Any] = {}
for img in self.images:
path_img = images_dir / str(img["file_name"])
path_img_str = str(path_img)
idx = int(img["id"])
annot = dict_id2annot.get(idx, [])
self.dict_path2annot[path_img_str] = annot
self.dict_path2id[path_img_str] = img["id"]
def __len__(self) -> int:
return len(self.data["images"])
@property
def info(self) -> Dict[str, Union[str, int]]:
return self.data["info"]
@property
def licenses(self) -> List[Dict[str, Union[str, int]]]:
return self.data["licenses"]
@property
def images(self) -> List[Dict[str, Union[str, int]]]:
return self.data["images"]
@property
def annotations(self) -> List[Any]:
return self.data["annotations"]
@property
def categories(self) -> List[Dict[str, Union[str, int]]]:
return self.data["categories"]
def get_annotations(self, image_path: str) -> List[Any]:
return self.dict_path2annot.get(image_path, [])
def get_image_id(self, image_path: str) -> int:
return self.dict_path2id.get(image_path, -1)
class COCO2017(datasets.GeneratorBasedBuilder):
"""COCO 2017 dataset."""
VERSION = datasets.Version("1.0.1")
def _info(self) -> datasets.DatasetInfo:
"""
Returns the dataset metadata and features.
Returns:
DatasetInfo: Metadata and features of the dataset.
"""
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"image": datasets.Image(),
"image_id": datasets.Value("int64"),
"objects": datasets.Sequence(
{
"id": datasets.Value("int64"),
"area": datasets.Value("float64"),
"bbox": datasets.Sequence(
datasets.Value("float32"), length=4
),
"label": datasets.ClassLabel(names=_CLASSES),
"iscrowd": datasets.Value("bool"),
}
),
}
),
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(
self, dl_manager: DownloadManager
) -> List[datasets.SplitGenerator]:
"""
Provides the split information and downloads the data.
Args:
dl_manager (DownloadManager): The DownloadManager to use for downloading and
extracting data.
Returns:
List[SplitGenerator]: List of SplitGenerator objects representing the data splits.
"""
archive_annots = dl_manager.download_and_extract(_URLS["annotations"])
splits = []
for split in _SPLITS:
archive_split = dl_manager.download(_URLS[split])
annotation_path = Path(archive_annots) / _PATHS["annotations"][split]
images = dl_manager.iter_archive(archive_split)
splits.append(
datasets.SplitGenerator(
name=datasets.Split(split),
gen_kwargs={
"annotation_path": annotation_path,
"images_dir": _PATHS["images"][split],
"images": images,
},
)
)
return splits
def _generate_examples(
self, annotation_path: Path, images_dir: Path, images: ArchiveIterable
) -> Iterator:
"""
Generates examples for the dataset.
Args:
annotation_path (Path): The path to the annotation file.
images_dir (Path): The path to the directory containing the images.
images: (ArchiveIterable): An iterable containing the images.
Yields:
Dict[str, Union[str, Image]]: A dictionary containing the generated examples.
"""
coco_annotation = COCOHelper(annotation_path, images_dir)
for image_path, f in images:
annotations = coco_annotation.get_annotations(image_path)
ret = {
"image": {"path": image_path, "bytes": f.read()},
"image_id": coco_annotation.get_image_id(image_path),
"objects": [
{
"id": annot["id"],
"area": annot["area"],
"bbox": round_box_values(annot["bbox"], 2), # [x, y, w, h]
"label": annot["category_id"],
"iscrowd": bool(annot["iscrowd"]),
}
for annot in annotations
],
}
yield image_path, ret
|