Datasets:

Modalities:
Text
Formats:
json
Sub-tasks:
extractive-qa
Languages:
Catalan
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
carmentano commited on
Commit
bdbf5ec
1 Parent(s): 3656d4a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -7
README.md CHANGED
@@ -109,13 +109,9 @@ Follows [Rajpurkar, Pranav et al., 2016](http://arxiv.org/abs/1606.05250) for SQ
109
 
110
  ## Dataset Creation
111
 
112
- ### Methodology
113
-
114
- From a set of high quality, non-translation, articles in the [Catalan Wikipedia](ca.wikipedia.org), 597 were randomly chosen, and from them 3111, 5-8 sentence contexts were extracted. We commissioned creation of between 1 and 5 questions for each context, following an adaptation of the guidelines from SQuAD 1.0 ([Rajpurkar, Pranav et al. “SQuAD: 100, 000+ Questions for Machine Comprehension of Text.” EMNLP (2016)](http://arxiv.org/abs/1606.05250)). In total, 15153 pairs of a question and an extracted fragment that contains the answer were created.
115
-
116
  ### Curation Rationale
117
 
118
- For compatibility with similar datasets in other languages, we followed as close as possible existing curation guidelines.
119
 
120
  ### Source Data
121
 
@@ -125,6 +121,10 @@ For compatibility with similar datasets in other languages, we followed as close
125
 
126
  The source data are scraped articles from the [Catalan wikipedia](https://ca.wikipedia.org) site.
127
 
 
 
 
 
128
  #### Who are the source language producers?
129
 
130
  Volunteers who collaborate with [Catalan Wikipedia](ca.wikipedia.org).
@@ -147,7 +147,7 @@ No personal or sensitive information included.
147
 
148
  ### Social Impact of Dataset
149
 
150
- [N/A]
151
 
152
  ### Discussion of Biases
153
 
@@ -163,7 +163,7 @@ No personal or sensitive information included.
163
 
164
  Carlos Rodríguez-Penagos ([email protected]) and Carme Armentano-Oller ([email protected]) from [BSC-CNS](https://www.bsc.es/).
165
 
166
- This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/en/inici/index.html) within the framework of the Projecte AINA.
167
 
168
  ### Licensing Information
169
 
 
109
 
110
  ## Dataset Creation
111
 
 
 
 
 
112
  ### Curation Rationale
113
 
114
+ We hope this corpus contributes to the development of language models in Catalan, a low-resource language.
115
 
116
  ### Source Data
117
 
 
121
 
122
  The source data are scraped articles from the [Catalan wikipedia](https://ca.wikipedia.org) site.
123
 
124
+ From a set of high quality, non-translation, articles in the [Catalan Wikipedia](ca.wikipedia.org), 597 were randomly chosen, and from them 3111, 5-8 sentence contexts were extracted. We commissioned creation of between 1 and 5 questions for each context, following an adaptation of the guidelines from SQuAD 1.0 ([Rajpurkar, Pranav et al. “SQuAD: 100, 000+ Questions for Machine Comprehension of Text.” EMNLP (2016)](http://arxiv.org/abs/1606.05250)). In total, 15153 pairs of a question and an extracted fragment that contains the answer were created.
125
+
126
+ For compatibility with similar datasets in other languages, we followed as close as possible existing curation guidelines.
127
+
128
  #### Who are the source language producers?
129
 
130
  Volunteers who collaborate with [Catalan Wikipedia](ca.wikipedia.org).
 
147
 
148
  ### Social Impact of Dataset
149
 
150
+ We hope this corpus contributes to the development of language models in Catalan, a low-resource language.
151
 
152
  ### Discussion of Biases
153
 
 
163
 
164
  Carlos Rodríguez-Penagos ([email protected]) and Carme Armentano-Oller ([email protected]) from [BSC-CNS](https://www.bsc.es/).
165
 
166
+ This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/en/inici/index.html) within the framework of the [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina/).
167
 
168
  ### Licensing Information
169