|
|
|
|
|
|
|
import json |
|
import csv |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """ """ |
|
|
|
|
|
_DESCRIPTION = """ GuiaCat is a dataset consisting of 5.750 restaurant reviews in Catalan, with 5 associated scores and a label of sentiment. The data was provided by GuiaCat and curated by the BSC. """ |
|
|
|
|
|
_HOMEPAGE = """ https://huggingface.co/datasets/projecte-aina/Parafraseja/ """ |
|
|
|
|
|
|
|
_URL = "https://huggingface.co/datasets/projecte-aina/Parafraseja/resolve/main/" |
|
_TRAINING_FILE = "train.csv" |
|
_DEV_FILE = "dev.csv" |
|
_TEST_FILE = "test.csv" |
|
|
|
|
|
class GuiaCatConfig(datasets.BuilderConfig): |
|
""" Builder config for the reviews_finder dataset """ |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for reviews_finder. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(GuiaCatConfig, self).__init__(**kwargs) |
|
|
|
|
|
class GuiaCat(datasets.GeneratorBasedBuilder): |
|
""" GuiaCat Dataset """ |
|
|
|
|
|
BUILDER_CONFIGS = [ |
|
GuiaCatConfig( |
|
name="GuiaCat", |
|
version=datasets.Version("1.0.0"), |
|
description="GuiaCat dataset", |
|
), |
|
] |
|
|
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"label": datasets.features.ClassLabel |
|
(names= |
|
[ |
|
"molt bo", |
|
"bo", |
|
"regular", |
|
"dolent", |
|
"molt dolent" |
|
] |
|
), |
|
} |
|
), |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
urls_to_download = { |
|
"train": f"{_URL}{_TRAINING_FILE}", |
|
"dev": f"{_URL}{_DEV_FILE}", |
|
"test": f"{_URL}{_TEST_FILE}", |
|
} |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), |
|
] |
|
|
|
|
|
def _generate_examples(self, filepath): |
|
"""This function returns the examples in the raw (text) form.""" |
|
logger.info("generating examples from = %s", filepath) |
|
with open(filepath) as f: |
|
read = csv.reader(f) |
|
data = [item for item in read] |
|
for id_, article in enumerate(data): |
|
text = article[5] |
|
label = article[6] |
|
yield id_, { |
|
"text": text, |
|
"label": label, |
|
} |
|
|