|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Poleval 2019 dataset for Polish Translation""" |
|
|
|
|
|
import os |
|
|
|
import datasets |
|
|
|
|
|
|
|
_CITATION = "" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
PolEval is a SemEval-inspired evaluation campaign for natural language processing tools for Polish.\ |
|
Submitted solutions compete against one another within certain tasks selected by organizers, using available data and are evaluated according to\ |
|
pre-established procedures. One of the tasks in PolEval-2019 was Machine Translation (Task-4).\ |
|
|
|
The task is to train as good as possible machine translation system, using any technology,with limited textual resources.\ |
|
The competition will be done for 2 language pairs, more popular English-Polish (into Polish direction) and pair that can be called low resourced\ |
|
Russian-Polish (in both directions). |
|
|
|
Here, Polish-English is also made available to allow for training in both directions. However, the test data is ONLY available for English-Polish. |
|
""" |
|
|
|
|
|
_HOMEPAGE = "http://2019.poleval.pl/" |
|
|
|
|
|
_LICENSE = "" |
|
|
|
|
|
_TRAIN_URL = { |
|
"ru-pl": { |
|
"dev.pl": "https://drive.google.com/u/0/uc?id=1mwx_zyQeTZzkXEWMPoj4yghcbFq4ETWx&export=download", |
|
"dev.ru": "https://drive.google.com/u/0/uc?id=1-z09ntfDYo6j3TBTpxqu6htE_a7IAWte&export=download", |
|
"train.pl": "https://drive.google.com/u/0/uc?id=11EBGHMAswT5JDO60xh7gnZfYjpMQs7h7&export=download", |
|
"train.ru": "https://drive.google.com/u/0/uc?id=1H7FphKVVCYoH49sUXl79CuztEfJLaKoF&export=download", |
|
}, |
|
"en-pl": { |
|
"dev.en": "https://drive.google.com/u/0/uc?id=1L6qQiO6kPLFj8BUK9XFNUH7bNyJVA7FC&export=download", |
|
"dev.pl": "https://drive.google.com/u/0/uc?id=1CP3oHL04qE1nfu3h_zmaxz5fmEtlwzLs&export=download", |
|
"train.en": "https://drive.google.com/u/0/uc?id=1NAeuWLgYBzLwU5jCdkrtj4_PRUocuvlb&export=download", |
|
"train.pl": "https://drive.google.com/u/0/uc?id=13ZyFc2qepAYSg9WIFaeJ9y402gblsl2e&export=download", |
|
}, |
|
} |
|
|
|
|
|
|
|
_TEST_URL = "http://2019.poleval.pl/task4/task4_test.zip" |
|
|
|
|
|
_SUPPORTED_LANGUAGES = { |
|
"ru": "Russian", |
|
"en": "English", |
|
} |
|
|
|
|
|
class PolevalMTConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for PolEval-2019 MT corpus.""" |
|
|
|
def __init__(self, language_pair=(None, None), **kwargs): |
|
"""BuilderConfig for PolEval-2019. |
|
Args: |
|
for the `datasets.features.text.TextEncoder` used for the features feature. |
|
language_pair: pair of languages that will be used for translation. Should |
|
contain 2-letter coded strings. First will be used at source and second |
|
as target in supervised mode. For example: ("pl", "en"). |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
|
|
name = "%s-%s" % (language_pair[0], language_pair[1]) |
|
assert "pl" in language_pair, ("Config language pair must contain `pl` (Polish), got: %s", language_pair) |
|
source, target = language_pair |
|
non_pl = source if target == "pl" else target |
|
assert non_pl in _SUPPORTED_LANGUAGES.keys(), ("Invalid non-polish language in pair: %s", non_pl) |
|
|
|
description = ("Translation dataset between Polish and %s") % (_SUPPORTED_LANGUAGES[non_pl]) |
|
super(PolevalMTConfig, self).__init__( |
|
name=name, |
|
description=description, |
|
version=datasets.Version("1.0.0", ""), |
|
**kwargs, |
|
) |
|
|
|
self.language_pair = language_pair |
|
|
|
|
|
class Poleval2019Mt(datasets.GeneratorBasedBuilder): |
|
"""Polish Translation Dataset""" |
|
|
|
BUILDER_CONFIGS = [PolevalMTConfig(language_pair=(key, "pl")) for key, val in _SUPPORTED_LANGUAGES.items()] + [ |
|
PolevalMTConfig(language_pair=("pl", key)) for key, val in _SUPPORTED_LANGUAGES.items() |
|
] |
|
|
|
def _info(self): |
|
source, target = self.config.language_pair |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{"translation": datasets.features.Translation(languages=self.config.language_pair)} |
|
), |
|
supervised_keys=(source, target), |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
source, target = self.config.language_pair |
|
|
|
if "en" in self.config.language_pair: |
|
urls = _TRAIN_URL["en-pl"] |
|
else: |
|
urls = _TRAIN_URL["ru-pl"] |
|
|
|
|
|
test_tmpl = "tst_to_{target}.{source}" |
|
|
|
files = {} |
|
for split in ("train", "dev"): |
|
dl_file_src = dl_manager.download_and_extract(urls[split + "." + source]) |
|
dl_file_dst = dl_manager.download_and_extract(urls[split + "." + target]) |
|
|
|
files[split] = { |
|
"source_file": dl_file_src, |
|
"target_file": dl_file_dst, |
|
"split": split, |
|
} |
|
|
|
|
|
|
|
if "en" == source: |
|
dl_dir_test = dl_manager.download_and_extract(_TEST_URL) |
|
test_file = os.path.join(dl_dir_test, "task4_test", "tst.en") |
|
elif "en" == target: |
|
test_file = "" |
|
else: |
|
dl_dir_test = dl_manager.download_and_extract(_TEST_URL) |
|
test_file = os.path.join(dl_dir_test, "task4_test", test_tmpl.format(target=target.upper(), source=source)) |
|
|
|
files["test"] = {"source_file": test_file, "target_file": "", "split": "test"} |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs=files["train"]), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs=files["dev"]), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs=files["test"]), |
|
] |
|
|
|
def _generate_examples(self, source_file, target_file, split): |
|
"""This function returns the examples in the raw (text) form.""" |
|
source, target = self.config.language_pair |
|
|
|
|
|
if split == "test": |
|
if target == "en": |
|
|
|
result = {"translation": {source: "", target: ""}} |
|
yield 0, result |
|
else: |
|
with open(source_file, encoding="utf-8") as f: |
|
source_sentences = f.read().split("\n") |
|
|
|
for idx, sent in enumerate(source_sentences): |
|
if sent.strip() != "": |
|
result = {"translation": {source: sent, target: ""}} |
|
yield idx, result |
|
else: |
|
|
|
with open(source_file, encoding="utf-8") as f: |
|
source_sentences = f.read().split("\n") |
|
with open(target_file, encoding="utf-8") as f: |
|
target_sentences = f.read().split("\n") |
|
|
|
assert len(target_sentences) == len(source_sentences), "Sizes do not match: %d vs %d for %s vs %s." % ( |
|
len(source_sentences), |
|
len(target_sentences), |
|
source_file, |
|
target_file, |
|
) |
|
|
|
for idx, (l1, l2) in enumerate(zip(source_sentences, target_sentences)): |
|
result = {"translation": {source: l1, target: l2}} |
|
|
|
yield idx, result |
|
|