File size: 5,857 Bytes
92c5f80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Cyberbullying Classification Dataset in Polish"""


import os

import datasets


_DESCRIPTION = """\
    In Task 6-1, the participants are to distinguish between normal/non-harmful tweets (class: 0) and tweets
    that contain any kind of harmful information (class: 1). This includes cyberbullying, hate speech and
    related phenomena.

    In Task 6-2, the participants shall distinguish between three classes of tweets: 0 (non-harmful),
    1 (cyberbullying), 2 (hate-speech). There are various definitions of both cyberbullying and hate-speech,
    some of them even putting those two phenomena in the same group. The specific conditions on which we based
    our annotations for both cyberbullying and hate-speech, which have been worked out during ten years of research
    will be summarized in an introductory paper for the task, however, the main and definitive condition to 1
    distinguish the two is whether the harmful action is addressed towards a private person(s) (cyberbullying),
    or a public person/entity/large group (hate-speech).
"""

_HOMEPAGE = "http://2019.poleval.pl/index.php/tasks/task6"

_URL_TRAIN_TASK1 = "http://2019.poleval.pl/task6/task_6-1.zip"
_URL_TRAIN_TASK2 = "http://2019.poleval.pl/task6/task_6-2.zip"
_URL_TEST = "http://2019.poleval.pl/task6/task6_test.zip"

_CITATION = """\
@proceedings{ogr:kob:19:poleval,
  editor    = {Maciej Ogrodniczuk and Łukasz Kobyliński},
  title     = {{Proceedings of the PolEval 2019 Workshop}},
  year      = {2019},
  address   = {Warsaw, Poland},
  publisher = {Institute of Computer Science, Polish Academy of Sciences},
  url       = {http://2019.poleval.pl/files/poleval2019.pdf},
  isbn      = "978-83-63159-28-3"}
}
"""


class Poleval2019CyberBullyingConfig(datasets.BuilderConfig):
    """BuilderConfig for Poleval2019CyberBullying."""

    def __init__(
        self,
        text_features,
        label_classes,
        **kwargs,
    ):
        super(Poleval2019CyberBullyingConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
        self.text_features = text_features
        self.label_classes = label_classes


class Poleval2019CyberBullying(datasets.GeneratorBasedBuilder):
    """Cyberbullying Classification Dataset in Polish"""

    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        Poleval2019CyberBullyingConfig(
            name="task01",
            text_features=["text"],
            label_classes=["0", "1"],
        ),
        Poleval2019CyberBullyingConfig(
            name="task02",
            text_features=["text"],
            label_classes=["0", "1", "2"],
        ),
    ]

    def _info(self):

        features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features}
        features["label"] = datasets.features.ClassLabel(names=self.config.label_classes)

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(features),
            supervised_keys=("text", "label"),
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""

        if self.config.name == "task01":
            train_path = dl_manager.download_and_extract(_URL_TRAIN_TASK1)

        if self.config.name == "task02":
            train_path = dl_manager.download_and_extract(_URL_TRAIN_TASK2)

        data_dir_test = dl_manager.download_and_extract(_URL_TEST)

        if self.config.name == "task01":
            test_path = os.path.join(data_dir_test, "Task6", "task 01")

        if self.config.name == "task02":
            test_path = os.path.join(data_dir_test, "Task6", "task 02")

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": train_path,
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": test_path,
                    "split": "test",
                },
            ),
        ]

    def _generate_examples(self, filepath, split):
        """ Yields examples. """

        if split == "train":
            text_path = os.path.join(filepath, "training_set_clean_only_text.txt")
            label_path = os.path.join(filepath, "training_set_clean_only_tags.txt")

        if split == "test":
            if self.config.name == "task01":
                text_path = os.path.join(filepath, "test_set_clean_only_text.txt")
                label_path = os.path.join(filepath, "test_set_clean_only_tags.txt")
            if self.config.name == "task02":
                text_path = os.path.join(filepath, "test_set_only_text.txt")
                label_path = os.path.join(filepath, "test_set_only_tags.txt")

        with open(text_path, encoding="utf-8") as text_file:
            with open(label_path, encoding="utf-8") as label_file:
                for id_, (text, label) in enumerate(zip(text_file, label_file)):
                    yield id_, {"text": text.strip(), "label": int(label.strip())}