|
"""TODO: Add a description here."""
|
|
|
|
import os
|
|
|
|
import datasets
|
|
|
|
|
|
|
|
_CITATION = """\
|
|
@inproceedings{zhong2020towards,
|
|
title = "Towards Persona-Based Empathetic Conversational Models",
|
|
author = "Zhong, Peixiang and
|
|
Zhang, Chen and
|
|
Wang, Hao and
|
|
Liu, Yong and
|
|
Miao, Chunyan",
|
|
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
|
|
year = "2020",
|
|
publisher = "Association for Computational Linguistics",
|
|
url = "https://www.aclweb.org/anthology/2020.emnlp-main.531",
|
|
pages = "6556--6566"}
|
|
"""
|
|
|
|
|
|
_DESCRIPTION = """\
|
|
A dataset of around 350K persona-based empathetic conversations. Each speaker is associated with a persona, which comprises multiple persona sentences. The response of each conversation is empathetic.
|
|
"""
|
|
|
|
_URL = "https://dl.dropboxusercontent.com/s/u04fzuhsnxd0uvw/hf_pec.zip"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class PECConfig(datasets.BuilderConfig):
|
|
"""BuilderConfig for PEC"""
|
|
|
|
def __init__(self, domain="all", **kwargs):
|
|
"""
|
|
Args:
|
|
domain: the domain of our dataset: happy or offmychest
|
|
**kwargs: keyword arguments forwarded to super.
|
|
"""
|
|
super(PECConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
|
|
self.domain = domain
|
|
|
|
|
|
class PEC(datasets.GeneratorBasedBuilder):
|
|
"""TODO: Short description of my dataset."""
|
|
|
|
VERSION = datasets.Version("1.0.0")
|
|
|
|
|
|
|
|
BUILDER_CONFIG_CLASS = PECConfig
|
|
BUILDER_CONFIGS = [
|
|
PECConfig(name=domain, description=f"A subset of PEC dataset: {domain}", domain=domain)
|
|
for domain in ["happy", "offmychest", "all"]
|
|
]
|
|
|
|
def _info(self):
|
|
|
|
return datasets.DatasetInfo(
|
|
|
|
description=_DESCRIPTION,
|
|
|
|
features=datasets.Features(
|
|
{
|
|
"personas": datasets.features.Sequence(datasets.Value("string")),
|
|
"context": datasets.features.Sequence(datasets.Value("string")),
|
|
"context_speakers": datasets.features.Sequence(datasets.Value("string")),
|
|
"response": datasets.Value("string"),
|
|
"response_speaker": datasets.Value("string"),
|
|
}
|
|
),
|
|
|
|
|
|
|
|
supervised_keys=None,
|
|
|
|
homepage="https://github.com/zhongpeixiang/PEC",
|
|
citation=_CITATION,
|
|
)
|
|
|
|
def _load_persona(self, paths):
|
|
persona = {}
|
|
is_speaker = True
|
|
sentences = []
|
|
for path in paths:
|
|
with open(path, encoding="utf-8") as f:
|
|
for row in f:
|
|
if "********************" not in row:
|
|
if is_speaker:
|
|
speaker = row.strip()
|
|
is_speaker = False
|
|
else:
|
|
sentences.append(row.strip())
|
|
else:
|
|
persona[speaker] = sentences
|
|
is_speaker = True
|
|
sentences = []
|
|
return persona
|
|
|
|
def _split_generators(self, dl_manager):
|
|
"""Returns SplitGenerators."""
|
|
|
|
|
|
|
|
dl_dir = dl_manager.download_and_extract(_URL)
|
|
data_dir = os.path.join(dl_dir, "hf_pec")
|
|
domains = ["happy", "offmychest"] if self.config.domain == "all" else [self.config.domain]
|
|
persona_paths = [os.path.join(data_dir, domain, "persona.txt") for domain in domains]
|
|
persona = self._load_persona(persona_paths)
|
|
|
|
return [
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.TRAIN,
|
|
gen_kwargs={
|
|
"filepath": [os.path.join(data_dir, domain, "train.txt") for domain in domains],
|
|
"split": "train",
|
|
"persona": persona,
|
|
},
|
|
),
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.TEST,
|
|
gen_kwargs={
|
|
"filepath": [os.path.join(data_dir, domain, "test.txt") for domain in domains],
|
|
"split": "test",
|
|
"persona": persona,
|
|
},
|
|
),
|
|
datasets.SplitGenerator(
|
|
name=datasets.Split.VALIDATION,
|
|
gen_kwargs={
|
|
"filepath": [os.path.join(data_dir, domain, "valid.txt") for domain in domains],
|
|
"split": "dev",
|
|
"persona": persona,
|
|
},
|
|
),
|
|
]
|
|
|
|
def _generate_examples(self, filepath, split, persona):
|
|
"""Yields examples."""
|
|
|
|
context_speakers = []
|
|
context = []
|
|
example_id = 0
|
|
for fpath in filepath:
|
|
with open(fpath, encoding="utf-8") as f:
|
|
for id_, row in enumerate(f):
|
|
if row.strip() == "":
|
|
continue
|
|
if "********************" not in row:
|
|
if "---+---" in row:
|
|
speaker, utterance = row.split("---+---")
|
|
context_speakers.append(speaker.strip())
|
|
context.append(utterance.strip())
|
|
else:
|
|
|
|
context[-1] = context[-1] + " " + row.strip()
|
|
else:
|
|
response_speaker = context_speakers.pop()
|
|
response = context.pop()
|
|
yield example_id, {
|
|
"personas": persona[response_speaker],
|
|
"context_speakers": context_speakers,
|
|
"context": context,
|
|
"response_speaker": response_speaker,
|
|
"response": response,
|
|
}
|
|
context_speakers = []
|
|
context = []
|
|
example_id += 1
|
|
|