File size: 5,698 Bytes
38395f2 be343e2 38395f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import datasets
import json
from glob import glob
import os
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@misc{ c6a3fe684227415a9db8e21bac4a15ab,
author = {Zhao Xue and Hanyu Zhao and Sha Yuan and Yequan Wang},
title = {{WuDaoCorpora Text}},
year = 2022,
month = dec,
publisher = {Science Data Bank},
version = {V1},
doi = {10.57760/sciencedb.o00126.00004},
url = https://doi.org/10.57760/sciencedb.o00126.00004
}
"""
_DESCRIPTION = """\
WuDaoCorpora Text is a large pretraining Chinese corpus constructed by Beijing Academy of Artificial Intelligence(BAAI). The total data volume of the dataset has exceeded 5TB, including 200GB open data.
Compared with other pretraining corpora, the WuDaoCorpora Text has the following advantages.
1) In the process of data collection, we classify the quality of web pages according to the proportion of words in web pages and the integrity of DOM trees, and select high-quality web page for data collection to ensure the corpus quality.
2) Through data cooperation with other institutions and web page data crawling, the dataset covers a wide range types of Chinese text, including news, comments, encyclopedias, forums, blogs, academic papers, etc.
3) The dataset uses more than 20 cleaning rules to obtain the final corpus from the 100TB original web page data. In the cleaning process, special attention is paid to the removal of private information to avoid the risk of privacy disclosure.
4) The dataset contains 50+ data tags, such as education and laws, which is convenient for users to extract specific-domain data for model training in that field.
Please obey the following agreement if you use our dataset.
https://data.baai.ac.cn/resources/agreement/BAAIDataAgreement.pdf
"""
_URL = "https://china.scidb.cn/download?fileId=63a30383fed6a8a9e8454302&traceId=a505523f-775b-4261-ad0c-406126824b4d"
class WuDaoConfig(datasets.BuilderConfig):
"""BuilderConfig for SQUAD."""
def __init__(self, **kwargs):
"""BuilderConfig for SQUAD.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(WuDaoConfig, self).__init__(**kwargs)
print(kwargs)
class WuDao(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
WuDaoConfig(
name="default",
version=datasets.Version("1.0.0", ""),
description="Plain text",
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("int32"),
"uniqueKey": datasets.Value("string"),
"titleUkey": datasets.Value("string"),
"dataType": datasets.Value("string"),
"title": datasets.Value("string"),
"content": datasets.Value("string")
}
),
homepage="https://www.scidb.cn/en/detail?dataSetId=c6a3fe684227415a9db8e21bac4a15ab",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# hf-dataset does not support .rar format
# simply implement a download and extract pipeline
import wget
from pathlib import Path
import patoolib
assert os.name in ["posix","Darwin"],"not a support os (Linux and Mac only)"
_cache_dir = os.path.join(Path.home(),'.cache/wudao_dataset')
print("dataset will save at:",_cache_dir)
_file_path = os.path.join(_cache_dir,"data.rar")
os.makedirs(_cache_dir,exist_ok=True)
# while file not exist, download and extract
if not os.path.isfile(_file_path):
wget.download(_URL,_file_path)
patoolib.extract_archive(_file_path, outdir=_cache_dir)
# rename
files = glob(os.path.join(_cache_dir,"WuDaoCorpus2.0_base_200G","*.json"))
os.makedirs(os.path.join(_cache_dir,"data_zhs"),exist_ok=True)
for f_idx,file_name in enumerate(files):
os.rename(file_name,os.path.join(_cache_dir,f"data_zhs/shard_{f_idx}.json"))
print(f_idx)
# clean
try:
os.removedirs(os.path.join(_cache_dir,"WuDaoCorpus2.0_base_200G"))
# os.remove(_file_path)
except:
pass
return [
datasets.SplitGenerator(name="zhs", gen_kwargs={"data_dir": _cache_dir,"lng":"zhs"}),
datasets.SplitGenerator(name="zht", gen_kwargs={"data_dir": _cache_dir,"lng":'zht'})
]
def _generate_examples(self, data_dir,lng="zhs"):
"""This function returns the examples in the raw (text) form."""
if lng == 'zht':
import opencc
s2t = opencc.OpenCC("s2t.json")
filepaths = glob(os.path.join(data_dir,"data_zhs","*.json"))
for filepath in filepaths:
with open(filepath) as f:
data = json.load(f)
for x in data:
if lng == "zhs":
yield x["id"],x
elif lng =="zht":
yield x["id"],{
"id":x["id"],
"uniqueKey":x["uniqueKey"],
"titleUkey":x["titleUkey"],
"dataType":s2t.convert(x["dataType"]),
"title":s2t.convert(x["title"]),
"content":s2t.convert(x["content"])
} |