File size: 11,270 Bytes
e9a94d1
82e8c1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9a94d1
82e8c1e
cfe39ea
82e8c1e
 
cfe39ea
82e8c1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68ef766
7b3c8a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82e8c1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68ef766
 
 
 
7b3c8a0
 
68ef766
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b3c8a0
68ef766
 
 
82e8c1e
 
68ef766
 
 
 
 
 
 
82e8c1e
 
 
8ceadbc
 
 
 
 
 
 
82e8c1e
 
 
 
 
 
 
 
 
 
 
 
68ef766
82e8c1e
 
 
68ef766
82e8c1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
languages:
- en
licenses:
- cc-by-4.0
multilinguality:
- monolingual
pretty_name: Elsevier OA CC-By Corpus
paperswithcode_id: elsevier-oa-cc-by-corpus
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- fill-mask
- summarization
- text-classification
task_ids:
- masked-language-modeling
- news-articles-summarization
- news-articles-headline-generation
---

# Dataset Card for Elsevier OA CC-By Corpus

## Table of Contents
- [Dataset Card for Elsevier OA CC-By Corpus](#dataset-card-for-elsevier-oa-cc-by-corpus)
  - [Table of Contents](#table-of-contents)
  - [Dataset Description](#dataset-description)
    - [Dataset Summary](#dataset-summary)
    - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
    - [Languages](#languages)
  - [Dataset Structure](#dataset-structure)
    - [Data Instances](#data-instances)
    - [Data Fields](#data-fields)
    - [Data Splits](#data-splits)
  - [Dataset Creation](#dataset-creation)
    - [Curation Rationale](#curation-rationale)
    - [Source Data](#source-data)
      - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
      - [Who are the source language producers?](#who-are-the-source-language-producers)
    - [Annotations](#annotations)
      - [Annotation process](#annotation-process)
      - [Who are the annotators?](#who-are-the-annotators)
    - [Personal and Sensitive Information](#personal-and-sensitive-information)
  - [Considerations for Using the Data](#considerations-for-using-the-data)
    - [Social Impact of Dataset](#social-impact-of-dataset)
    - [Discussion of Biases](#discussion-of-biases)
    - [Other Known Limitations](#other-known-limitations)
  - [Additional Information](#additional-information)
    - [Dataset Curators](#dataset-curators)
    - [Licensing Information](#licensing-information)
    - [Citation Information](#citation-information)
    - [Contributions](#contributions)

## Dataset Description

- **Homepage:** https://elsevier.digitalcommonsdata.com/datasets/zm33cdndxs
- **Repository:** https://elsevier.digitalcommonsdata.com/datasets/zm33cdndxs
- **Paper:** https://arxiv.org/abs/2008.00774
- **Leaderboard:**
- **Point of Contact:** [@orieg](https://huggingface.co/orieg)

### Dataset Summary

Elsevier OA CC-By Corpus: This is a corpus of 40k (40,091) open access (OA) CC-BY articles from across Elsevier’s journals
representing a large scale, cross-discipline set of research data to support NLP and ML research. The corpus include full-text
articles published in 2014 to 2020 and are categorized in 27 Mid Level ASJC Code (subject classification).

***Distribution of Publication Years***

| Publication Year | Number of Articles |
| :---: | :---: |
| 2014 | 3018 |
| 2015 | 4438 |
| 2016 | 5913 |
| 2017 | 6419 |
| 2018 | 8016 |
| 2019 | 10135 |
| 2020 | 2159 |

***Distribution of Articles Per Mid Level ASJC Code. Each article can belong to multiple ASJC codes.***

| Discipline | Count |
| --- | ---: |
| General | 3847 |
| Agricultural and Biological Sciences | 4840 |
| Arts and Humanities | 982 |
| Biochemistry, Genetics and Molecular Biology | 8356 |
| Business, Management and Accounting | 937 |
| Chemical Engineering | 1878 |
| Chemistry | 2490 |
| Computer Science | 2039 |
| Decision Sciences | 406 |
| Earth and Planetary Sciences | 2393 |
| Economics, Econometrics and Finance | 976 |
| Energy | 2730 |
| Engineering | 4778 |
| Environmental Science | 6049 |
| Immunology and Microbiology | 3211 |
| Materials Science | 3477 |
| Mathematics | 538 |
| Medicine | 7273 |
| Neuroscience | 3669 |
| Nursing | 308 |
| Pharmacology, Toxicology and Pharmaceutics | 2405 |
| Physics and Astronomy | 2404 |
| Psychology | 1760 |
| Social Sciences | 3540 |
| Veterinary | 991 |
| Dentistry | 40 |
| Health Professions | 821 |

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages

English (`en`).

## Dataset Structure
    
### Data Instances

The original dataset was published with the following json structure:
```
{
    "docId": <str>,
    "metadata":{
        "title": <str>,
        "authors": [
            {
                "first": <str>,
                "initial": <str>,
                "last": <str>,
                "email": <str>
            },
            ...
        ],
        "issn": <str>,
        "volume": <str>,
        "firstpage": <str>,
        "lastpage": <str>,
        "pub_year": <int>,
        "doi": <str>,
        "pmid": <str>,
        "openaccess": "Full",
        "subjareas": [<str>],
        "keywords": [<str>],
        "asjc": [<int>],
    },
    "abstract":[
        {
          "sentence": <str>,
          "startOffset": <int>,
          "endOffset": <int>
        },
        ...
    ],
    "bib_entries":{
        "BIBREF0":{
            "title":<str>,
            "authors":[
                {
                "last":<str>,
                "initial":<str>,
                "first":<str>
                },
                ...
            ],
            "issn": <str>,
            "volume": <str>,
            "firstpage": <str>,
            "lastpage": <str>,
            "pub_year": <int>,
            "doi": <str>,
            "pmid": <str>
        },
        ...
    },
    "body_text":[
        {
        "sentence": <str>,
        "secId": <str>,
        "startOffset": <int>,
        "endOffset": <int>,
        "title": <str>,
        "refoffsets": {
            <str>:{
                "endOffset":<int>,
                "startOffset":<int>
                }
            },
        "parents": [
            {
            "id": <str>,
            "title": <str>
            },
            ...
        ]
    },
    ...
    ]
}
```

***docId*** The docID is the identifier of the document. This is unique to the document, and can be resolved into a URL
for the document through the addition of `https//www.sciencedirect.com/science/pii/<docId>`

***abstract*** This is the author provided abstract for the document

***body_text*** The full text for the document. The text has been split on sentence boundaries, thus making it easier to
use across research projects. Each sentence has the title (and ID) of the section which it is from, along with titles (and
IDs) of the parent section. The highest-level section takes index 0 in the parents array. If the array is empty then the
title of the section for the sentence is the highest level section title. This will allow for the reconstruction of the article
structure. References have been extracted from the sentences. The IDs of the extracted reference and their respective
offset within the sentence can be found in the “refoffsets” field. The complete list of references are can be found in
the “bib_entry” field along with the references’ respective metadata. Some will be missing as we only keep ‘clean’
sentences,

***bib_entities*** All the references from within the document can be found in this section. If the meta data for the
reference is available, it has been added against the key for the reference. Where possible information such as the
document titles, authors, and relevant identifiers (DOI and PMID) are included. The keys for each reference can be
found in the sentence where the reference is used with the start and end offset of where in the sentence that reference
was used.

***metadata*** Meta data includes additional information about the article, such as list of authors, relevant IDs (DOI and
PMID). Along with a number of classification schemes such as ASJC and Subject Classification.

***author_highlights*** Author highlights were included in the corpus where the author(s) have provided them. The
coverage is 61% of all articles. The author highlights, consisting of 4 to 6 sentences, is provided by the author with
the aim of summarising the core findings and results in the article.

### Data Fields

* ***title***: This is the author provided title for the document. 100% coverage.
* ***abstract***: This is the author provided abstract for the document. 99.25% coverage.
* ***keywords***: This is the author and publisher provided keywords for the document. 100% coverage.
* ***asjc***: This is the disciplines for the document as represented by 334 ASJC (All Science Journal Classification) codes. 100% coverage.
* ***subjareas***: This is the Subject Classification for the document as represented by 27 ASJC top-level subject classifications. 100% coverage.
* ***body_text***: The full text for the document. 100% coverage.
* ***author_highlights***: This is the author provided highlights for the document. 61.31% coverage.

### Data Splits

***Distribution of Publication Years***

|  | Train | Test | Validation |
| --- | :---: | :---: | :---: |
| All Articles | 32072 | 4009 | 4008 |
| With Author Highlights | 19644 | 2420 | 2514 |

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

Date the data was collected:	2020-06-25T11:00:00.000Z

See the [original paper](https://doi.org/10.48550/arXiv.2008.00774) for more detail on the data collection process.

#### Who are the source language producers?

See `3.1 Data Sampling` in the [original paper](https://doi.org/10.48550/arXiv.2008.00774).

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[CC BY 4.0](https://creativecommons.org/licenses/by/4.0/)

### Citation Information

```
@article{Kershaw2020ElsevierOC,
  title     = {Elsevier OA CC-By Corpus},
  author    = {Daniel James Kershaw and R. Koeling},
  journal   = {ArXiv},
  year      = {2020},
  volume    = {abs/2008.00774},
  doi       = {https://doi.org/10.48550/arXiv.2008.00774},
  url       = {https://elsevier.digitalcommonsdata.com/datasets/zm33cdndxs},
  keywords  = {Science, Natural Language Processing, Machine Learning, Open Dataset},
  abstract  = {We introduce the Elsevier OA CC-BY corpus. This is the first open
               corpus of Scientific Research papers which has a representative sample
               from across scientific disciplines. This corpus not only includes the
               full text of the article, but also the metadata of the documents, 
               along with the bibliographic information for each reference.}
}
```

```
@dataset{https://10.17632/zm33cdndxs.3,
  doi       = {10.17632/zm33cdndxs.2},
  url       = {https://data.mendeley.com/datasets/zm33cdndxs/3},
  author    = "Daniel Kershaw and Rob Koeling",
  keywords  = {Science, Natural Language Processing, Machine Learning, Open Dataset},
  title     = {Elsevier OA CC-BY Corpus},
  publisher = {Mendeley},
  year      = {2020},
  month     = {sep}
}
```

### Contributions

Thanks to [@orieg](https://github.com/orieg) for adding this dataset.