cistine's picture
Upload 490 files
b98ffbb verified
from dora import DoraStatus
import pylcs
import textwrap
import os
import pyarrow as pa
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import json
import re
def extract_python_code_blocks(text):
"""
Extracts Python code blocks from the given text that are enclosed in triple backticks with a python language identifier.
Parameters:
- text: A string that may contain one or more Python code blocks.
Returns:
- A list of strings, where each string is a block of Python code extracted from the text.
"""
pattern = r"```python\n(.*?)\n```"
matches = re.findall(pattern, text, re.DOTALL)
if len(matches) == 0:
pattern = r"```python\n(.*?)(?:\n```|$)"
matches = re.findall(pattern, text, re.DOTALL)
if len(matches) == 0:
return [text]
return matches
def extract_json_code_blocks(text):
"""
Extracts json code blocks from the given text that are enclosed in triple backticks with a json language identifier.
Parameters:
- text: A string that may contain one or more json code blocks.
Returns:
- A list of strings, where each string is a block of json code extracted from the text.
"""
pattern = r"```json\n(.*?)\n```"
matches = re.findall(pattern, text, re.DOTALL)
if len(matches) == 0:
pattern = r"```json\n(.*?)(?:\n```|$)"
matches = re.findall(pattern, text, re.DOTALL)
if len(matches) == 0:
return [text]
return matches
def remove_last_line(python_code):
"""
Removes the last line from a given string of Python code.
Parameters:
- python_code: A string representing Python source code.
Returns:
- A string with the last line removed.
"""
lines = python_code.split("\n") # Split the string into lines
if lines: # Check if there are any lines to remove
lines.pop() # Remove the last line
return "\n".join(lines) # Join the remaining lines back into a string
def calculate_similarity(source, target):
"""
Calculate a similarity score between the source and target strings.
This uses the edit distance relative to the length of the strings.
"""
edit_distance = pylcs.edit_distance(source, target)
max_length = max(len(source), len(target))
# Normalize the score by the maximum possible edit distance (the length of the longer string)
similarity = 1 - (edit_distance / max_length)
return similarity
def find_best_match_location(source_code, target_block):
"""
Find the best match for the target_block within the source_code by searching line by line,
considering blocks of varying lengths.
"""
source_lines = source_code.split("\n")
target_lines = target_block.split("\n")
best_similarity = 0
best_start_index = -1
best_end_index = -1
# Iterate over the source lines to find the best matching range for all lines in target_block
for start_index in range(len(source_lines) - len(target_lines) + 1):
for end_index in range(start_index + len(target_lines), len(source_lines) + 1):
current_window = "\n".join(source_lines[start_index:end_index])
current_similarity = calculate_similarity(current_window, target_block)
if current_similarity > best_similarity:
best_similarity = current_similarity
best_start_index = start_index
best_end_index = end_index
# Convert line indices back to character indices for replacement
char_start_index = len("\n".join(source_lines[:best_start_index])) + (
1 if best_start_index > 0 else 0
)
char_end_index = len("\n".join(source_lines[:best_end_index]))
return char_start_index, char_end_index
def replace_code_in_source(source_code, replacement_block: str):
"""
Replace the best matching block in the source_code with the replacement_block, considering variable block lengths.
"""
replacement_block = extract_python_code_blocks(replacement_block)[0]
print("replacement_block: ", replacement_block)
replacement_block = remove_last_line(replacement_block)
start_index, end_index = find_best_match_location(source_code, replacement_block)
if start_index != -1 and end_index != -1:
# Replace the best matching part with the replacement block
new_source = (
source_code[:start_index] + replacement_block + source_code[end_index:]
)
return new_source
else:
return source_code
def save_as(content, path):
# use at the end of replace_2 as save_as(end_result, "file_path")
with open(path, "w") as file:
file.write(content)
class Operator:
def __init__(self):
# Load tokenizer
model_name_or_path = "/home/peiji/deepseek-coder-6.7B-instruct-GPTQ/"
# To use a different branch, change revision
# For example: revision="gptq-4bit-32g-actorder_True"
self.model = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
device_map="auto",
trust_remote_code=False,
revision="main",
)
self.tokenizer = AutoTokenizer.from_pretrained(
model_name_or_path, use_fast=True
)
def on_event(
self,
dora_event,
send_output,
) -> DoraStatus:
if dora_event["type"] == "INPUT":
input = dora_event["value"][0].as_py()
if False:
with open(input["path"], "r", encoding="utf8") as f:
raw = f.read()
prompt = f"{raw} \n {input['query']}. "
print("prompt: ", prompt, flush=True)
output = self.ask_mistral(
"You're a python code expert. Respond with the small modified code only. No explaination",
prompt,
)
print("output: {}".format(output))
source_code = replace_code_in_source(raw, output)
send_output(
"output_file",
pa.array(
[
{
"raw": source_code,
# "path": input["path"],
# "response": output,
# "prompt": prompt,
}
]
),
dora_event["metadata"],
)
else:
output = self.ask_mistral(
"""You're a json expert. Format your response as a json with a topic and a data field in a ```json block. No explaination needed. No code needed.
The schema for those json are:
- led: Int[3] (min: 0, max: 255) # RGB values
- blaster: Int (min: 0, max: 128)
- control: Int[3] (min: -1, max: 1)
- rotation: Int[2] (min: -55, max: 55)
- message: String
The response should look like this:
```json
{
"topic": "led",
"data": [255, 0, 0]
}
```
""",
input["query"],
)
output = extract_json_code_blocks(output)[0]
print("output: {}".format(output), flush=True)
try:
output = json.loads(output)
if not isinstance(output["data"], list):
output["data"] = [output["data"]]
if output["topic"] in [
"led",
"blaster",
"control",
"rotation",
"text",
]:
print("output", output)
send_output(
output["topic"],
pa.array(output["data"]),
dora_event["metadata"],
)
except:
print("Could not parse json")
# if data is not iterable, put data in a list
return DoraStatus.CONTINUE
def ask_mistral(self, system_message, prompt):
prompt_template = f"""
### Instruction
{system_message}
{prompt}
### Response:
"""
# Generate output
input = self.tokenizer(prompt_template, return_tensors="pt")
input_ids = input.input_ids.cuda()
# add attention mask here
attention_mask = input["attention_mask"]
output = self.model.generate(
inputs=input_ids,
temperature=0.7,
do_sample=True,
top_p=0.95,
top_k=40,
max_new_tokens=512,
attention_mask=attention_mask,
eos_token_id=self.tokenizer.eos_token_id,
)
# Get the tokens from the output, decode them, print them
# Get text between im_start and im_end
return self.tokenizer.decode(output[0], skip_special_tokens=True)[
len(prompt_template) :
]
if __name__ == "__main__":
op = Operator()
# Path to the current file
current_file_path = __file__
# Directory of the current file
current_directory = os.path.dirname(current_file_path)
path = current_directory + "plot.py"
with open(path, "r", encoding="utf8") as f:
raw = f.read()
op.on_event(
{
"type": "INPUT",
"id": "tick",
"value": pa.array(
[
{
"raw": raw,
"path": path,
"query": "Send message my name is Carlito",
}
]
),
"metadata": [],
},
print,
)