File size: 9,212 Bytes
5a839bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# from pathlib import Path 

# import pandas as pd
# import regex as re
# import os

# import torchaudio
# import argparse
# from tqdm import tqdm  

# from collections import OrderedDict


# feat_dict = OrderedDict()
# od['Modality'] = ['full-AV', 'video-only', 'audio-only']
# od['Vocal channel'] = ['speech', 'song']
# od['Emotion'] = ['neutral', 'calm', 'happy', 'sad', 'angry', 'fearful', 'disgust', 'surprised']
# od['Emotion intensity'] = ['normal', 'strong']
# od['Statement'] = ["Kids are talking by the door", "Dogs are sitting by the door"]
# od['Repetition'] = ["1st repetition", "2nd repetition"]


# # def filename2feats(filename):
# #     codes = filename.stem.split('-')
# #     for i, k in enumerate(od.keys()):
# #         d = {}
# #         d[k] = od[k][int(codes[i])-1]
# #         d['Actor'] = codes[-1]
# #         d['Gender'] = 'female' if int(codes[-1]) % 2 == 0 else 'male'
# #     return d

# def preprocess(data_root_path):
#     output_dir = data_root_path / "RAVDESS_ser"
#     for f in data_root_path.iterdir():
#         print(f)
#         filename2feats(filename)
#         print("\n\n")



# # Filename identifiers 

# # Modality (01 = full-AV, 02 = video-only, 03 = audio-only).
# # Vocal channel (01 = speech, 02 = song).
# # Emotion (01 = neutral, 02 = calm, 03 = happy, 04 = sad, 05 = angry, 06 = fearful, 07 = disgust, 08 = surprised).
# # Emotional intensity (01 = normal, 02 = strong). NOTE: There is no strong intensity for the 'neutral' emotion.
# # Statement (01 = "Kids are talking by the door", 02 = "Dogs are sitting by the door").
# # Repetition (01 = 1st repetition, 02 = 2nd repetition).
# # Actor (01 to 24. Odd numbered actors are male, even numbered actors are female).

# # Filename example: 02-01-06-01-02-01-12.mp4 

# # Video-only (02)
# # Speech (01)
# # Fearful (06)
# # Normal intensity (01)
# # Statement "dogs" (02)
# # 1st Repetition (01)
# # 12th Actor (12)
# # Female, as the actor ID number is even.







# #         self.data_root_path = Path(data_root_path)
# #         df = pd.DataFrame()
# #         for session in range(1,5):
# #             print(f"Processing session {session}")
# #             df = pd.concat([df, self.read_session_data(session)])

# #         # Write the sliced wavs
# #         print("Writing wav slices to file...")
# #         sample_rate = 16000
# #         for index, row in df.iterrows():
# #             old_filename = str(self.data_root_path / Path(row['Path_to_Wav']))
# #             new_filename = str(output_dir / (index + ".wav"))
# #             waveform = self.read_audio(old_filename,
# #                                        start=row['Time_Start'],
# #                                        end=row['Time_End'])
# #             torchaudio.save(os.path.join(new_filename), 
# #                                          src=waveform, 
# #                                          sample_rate=sample_rate)
# #             df.at[index, 'Path_to_Wav'] = new_filename
            

# #         # Write out the combined data information
# #         try:
# #             df.to_csv(output_filename, index=False, header=True)
# #         except:
# #             print("Error writing dataframe to csv.")



# #     def read_session_data(self, session_id):
# #         d1 = self.read_emotion_labels(session_id)
# #         d2 = self.read_transcriptions(session_id)
# #         return d1.join(d2)


# #     def read_emotion_labels(self, session_id):        
# #         emo_path = Path(self.data_root_path / Path(f"Session{session_id}") / Path("dialog") / Path("EmoEvaluation"))    
# #         emo_files = [f for f in list(emo_path.iterdir()) if f.suffix == ".txt"]
# #         df = pd.DataFrame()
# #         for ef in emo_files:
# #             df2 = self.read_emotion_file(ef)
# #             for ri, row in df2.iterrows():
# #                 df2.loc[ri, 'Path_to_Wav'] = os.path.join(f"Session{session_id}", 
# #                                                          "dialog", "wav", 
# #                                                          row['Session_ID'] +".wav")
# #             df = pd.concat([df, df2])
# #         df = df.set_index('ID')
# #         return df


# #     def slice_audio(self, session_id):
# #         for i, row in df.iterrows():
# #             filename = row['Session_ID'] + ".wav"
# #             wav_path = Path(self.data_root_path / Path(f"Session{session_id}") / Path("dialog") / Path("wav") / Path(filename))
# #             print("wav path = ", wav_path)
# #             self.read_audio(wav_path, row['Time_Start'], row['Time_End'], row['Annotations'])


# #     def read_emotion_file(self, filename):
# #         time_extract_pattern = "\[([0-9\.]+) - ([0-9\.]+)\] +([^ ]+) +([^ ]+) \[([^\]]+)\]"
# #         df = pd.DataFrame() #columns=columns)
# #         i = 0
# #         with open(filename) as file:
# #             lines = file.readlines()
# #             lines = lines[2:] #:10]

# #             while i < len(lines):
# #                 # Remove header
# #                 if match := re.search(time_extract_pattern, lines[i].replace("\t", " ")):
# #                     time_start = float(match.group(1))
# #                     time_end = float(match.group(2))
# #                     filename = match.group(3)
# #                     mys_id = match.group(4)
# #                     digits = [float(x) for x in match.group(5).split(", ")]
# #                     annotations = []
# #                     while lines[i] != "\n":
# #                         i += 1
# #                         if lines[i].startswith("C-"):
# #                             aid, anns, _ = lines[i].split("\t")
# #                             for an in anns.split(";")[:-1]:
# #                                 annotations.append(an.strip())
# #                         elif lines[i].startswith("A-"):
# #                             pass

# #                     annotations = list(set(annotations))
# #                     annotations = ','.join(annotations)

# #                     session_id = filename[:filename.rindex("_")] 
# #                     utt_id = filename[filename.rindex("_")+1:]

# #                     df2 = pd.DataFrame([{
# #                                   'ID': filename, # ID for join between dataframes is the filename
# #                                   'Session_ID': session_id,
# #                                   'Utterance_ID': utt_id,
# #                                   'Time_Start': time_start,
# #                                   'Time_End': time_end,
# #                                   'Labels': annotations}])
# #                     df = pd.concat([df, df2], ignore_index=True)
# #                 else:
# #                     i += 1
# #         return df


# #     def read_transcriptions(self, session_id):
# #         df = pd.DataFrame()
# #         transcripts_path = Path(self.data_root_path / Path(f"Session{session_id}") / Path("dialog") / Path("transcriptions"))    
# #         transcript_files = [f for f in list(transcripts_path.iterdir()) if f.suffix == ".txt"]
# #         for f in transcript_files:
# #             df = pd.concat([df, self.read_transcript(f)], ignore_index=True)  
# #         df = df.set_index('ID')
# #         return df          


# #     def read_transcript(self, filename):
# #         df = pd.DataFrame()
# #         with open(filename, "r") as f:
# #             for l in f.readlines():
# #                 cols = l.strip().split(" ")
# #                 if l[1] != ":" and len(cols) > 2: # There are some lines like "F:Mmhmm." that get ignored here
# #                     df2 = pd.DataFrame([{
# #                         'ID': cols[0],
# #                         'Transcription': ' '.join(cols[2:])
# #                         }])
# #                     df = pd.concat([df, df2])
# #         return df


# #     def read_audio(self, filename, start, end, sample_rate=16000):
# #         waveform, sample_rate = torchaudio.load(filename,
# #                                                 frame_offset=int(start * sample_rate),
# #                                                 num_frames=int((end-start) * sample_rate))
# #         return waveform


# # if __name__ == '__main__':
# # #    osx_path = '/Users/narad/Downloads/RAVDESS_full_release'
# # #    windows_path = r'C:\Users\jasonn\Desktop\ser\data\RAVDESS_full_release'

# #     parser = argparse.ArgumentParser(description='Process some integers.')
# #     parser.add_argument('--data_dir', type=Path, required=True,
# #                        help='Path to IEOMCAP release directory.')
# #     parser.add_argument('--output_file', type=Path, default="data.csv", 
# #                         help='Filename for Huggingface-compatible dataset csv file.')
# #     parser.add_argument('--output_dir', type=Path, default="processed",
# #                        help='Directory for processed wav files')
# #     args = parser.parse_args()

# #     print(args)

# #     reader = RAVDESS(data_root_path=args.data_dir,
# #                      output_filename=args.output_file)











#     # columns = ['Utterance_ID',
#     #            'Time_Start',
#     #            'Time-End',
#     #            'Annotations']