Datasets:
Tasks:
Audio Classification
Sub-tasks:
audio-emotion-recognition
Languages:
English
Size:
1K<n<10K
License:
File size: 9,212 Bytes
5a839bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
# from pathlib import Path
# import pandas as pd
# import regex as re
# import os
# import torchaudio
# import argparse
# from tqdm import tqdm
# from collections import OrderedDict
# feat_dict = OrderedDict()
# od['Modality'] = ['full-AV', 'video-only', 'audio-only']
# od['Vocal channel'] = ['speech', 'song']
# od['Emotion'] = ['neutral', 'calm', 'happy', 'sad', 'angry', 'fearful', 'disgust', 'surprised']
# od['Emotion intensity'] = ['normal', 'strong']
# od['Statement'] = ["Kids are talking by the door", "Dogs are sitting by the door"]
# od['Repetition'] = ["1st repetition", "2nd repetition"]
# # def filename2feats(filename):
# # codes = filename.stem.split('-')
# # for i, k in enumerate(od.keys()):
# # d = {}
# # d[k] = od[k][int(codes[i])-1]
# # d['Actor'] = codes[-1]
# # d['Gender'] = 'female' if int(codes[-1]) % 2 == 0 else 'male'
# # return d
# def preprocess(data_root_path):
# output_dir = data_root_path / "RAVDESS_ser"
# for f in data_root_path.iterdir():
# print(f)
# filename2feats(filename)
# print("\n\n")
# # Filename identifiers
# # Modality (01 = full-AV, 02 = video-only, 03 = audio-only).
# # Vocal channel (01 = speech, 02 = song).
# # Emotion (01 = neutral, 02 = calm, 03 = happy, 04 = sad, 05 = angry, 06 = fearful, 07 = disgust, 08 = surprised).
# # Emotional intensity (01 = normal, 02 = strong). NOTE: There is no strong intensity for the 'neutral' emotion.
# # Statement (01 = "Kids are talking by the door", 02 = "Dogs are sitting by the door").
# # Repetition (01 = 1st repetition, 02 = 2nd repetition).
# # Actor (01 to 24. Odd numbered actors are male, even numbered actors are female).
# # Filename example: 02-01-06-01-02-01-12.mp4
# # Video-only (02)
# # Speech (01)
# # Fearful (06)
# # Normal intensity (01)
# # Statement "dogs" (02)
# # 1st Repetition (01)
# # 12th Actor (12)
# # Female, as the actor ID number is even.
# # self.data_root_path = Path(data_root_path)
# # df = pd.DataFrame()
# # for session in range(1,5):
# # print(f"Processing session {session}")
# # df = pd.concat([df, self.read_session_data(session)])
# # # Write the sliced wavs
# # print("Writing wav slices to file...")
# # sample_rate = 16000
# # for index, row in df.iterrows():
# # old_filename = str(self.data_root_path / Path(row['Path_to_Wav']))
# # new_filename = str(output_dir / (index + ".wav"))
# # waveform = self.read_audio(old_filename,
# # start=row['Time_Start'],
# # end=row['Time_End'])
# # torchaudio.save(os.path.join(new_filename),
# # src=waveform,
# # sample_rate=sample_rate)
# # df.at[index, 'Path_to_Wav'] = new_filename
# # # Write out the combined data information
# # try:
# # df.to_csv(output_filename, index=False, header=True)
# # except:
# # print("Error writing dataframe to csv.")
# # def read_session_data(self, session_id):
# # d1 = self.read_emotion_labels(session_id)
# # d2 = self.read_transcriptions(session_id)
# # return d1.join(d2)
# # def read_emotion_labels(self, session_id):
# # emo_path = Path(self.data_root_path / Path(f"Session{session_id}") / Path("dialog") / Path("EmoEvaluation"))
# # emo_files = [f for f in list(emo_path.iterdir()) if f.suffix == ".txt"]
# # df = pd.DataFrame()
# # for ef in emo_files:
# # df2 = self.read_emotion_file(ef)
# # for ri, row in df2.iterrows():
# # df2.loc[ri, 'Path_to_Wav'] = os.path.join(f"Session{session_id}",
# # "dialog", "wav",
# # row['Session_ID'] +".wav")
# # df = pd.concat([df, df2])
# # df = df.set_index('ID')
# # return df
# # def slice_audio(self, session_id):
# # for i, row in df.iterrows():
# # filename = row['Session_ID'] + ".wav"
# # wav_path = Path(self.data_root_path / Path(f"Session{session_id}") / Path("dialog") / Path("wav") / Path(filename))
# # print("wav path = ", wav_path)
# # self.read_audio(wav_path, row['Time_Start'], row['Time_End'], row['Annotations'])
# # def read_emotion_file(self, filename):
# # time_extract_pattern = "\[([0-9\.]+) - ([0-9\.]+)\] +([^ ]+) +([^ ]+) \[([^\]]+)\]"
# # df = pd.DataFrame() #columns=columns)
# # i = 0
# # with open(filename) as file:
# # lines = file.readlines()
# # lines = lines[2:] #:10]
# # while i < len(lines):
# # # Remove header
# # if match := re.search(time_extract_pattern, lines[i].replace("\t", " ")):
# # time_start = float(match.group(1))
# # time_end = float(match.group(2))
# # filename = match.group(3)
# # mys_id = match.group(4)
# # digits = [float(x) for x in match.group(5).split(", ")]
# # annotations = []
# # while lines[i] != "\n":
# # i += 1
# # if lines[i].startswith("C-"):
# # aid, anns, _ = lines[i].split("\t")
# # for an in anns.split(";")[:-1]:
# # annotations.append(an.strip())
# # elif lines[i].startswith("A-"):
# # pass
# # annotations = list(set(annotations))
# # annotations = ','.join(annotations)
# # session_id = filename[:filename.rindex("_")]
# # utt_id = filename[filename.rindex("_")+1:]
# # df2 = pd.DataFrame([{
# # 'ID': filename, # ID for join between dataframes is the filename
# # 'Session_ID': session_id,
# # 'Utterance_ID': utt_id,
# # 'Time_Start': time_start,
# # 'Time_End': time_end,
# # 'Labels': annotations}])
# # df = pd.concat([df, df2], ignore_index=True)
# # else:
# # i += 1
# # return df
# # def read_transcriptions(self, session_id):
# # df = pd.DataFrame()
# # transcripts_path = Path(self.data_root_path / Path(f"Session{session_id}") / Path("dialog") / Path("transcriptions"))
# # transcript_files = [f for f in list(transcripts_path.iterdir()) if f.suffix == ".txt"]
# # for f in transcript_files:
# # df = pd.concat([df, self.read_transcript(f)], ignore_index=True)
# # df = df.set_index('ID')
# # return df
# # def read_transcript(self, filename):
# # df = pd.DataFrame()
# # with open(filename, "r") as f:
# # for l in f.readlines():
# # cols = l.strip().split(" ")
# # if l[1] != ":" and len(cols) > 2: # There are some lines like "F:Mmhmm." that get ignored here
# # df2 = pd.DataFrame([{
# # 'ID': cols[0],
# # 'Transcription': ' '.join(cols[2:])
# # }])
# # df = pd.concat([df, df2])
# # return df
# # def read_audio(self, filename, start, end, sample_rate=16000):
# # waveform, sample_rate = torchaudio.load(filename,
# # frame_offset=int(start * sample_rate),
# # num_frames=int((end-start) * sample_rate))
# # return waveform
# # if __name__ == '__main__':
# # # osx_path = '/Users/narad/Downloads/RAVDESS_full_release'
# # # windows_path = r'C:\Users\jasonn\Desktop\ser\data\RAVDESS_full_release'
# # parser = argparse.ArgumentParser(description='Process some integers.')
# # parser.add_argument('--data_dir', type=Path, required=True,
# # help='Path to IEOMCAP release directory.')
# # parser.add_argument('--output_file', type=Path, default="data.csv",
# # help='Filename for Huggingface-compatible dataset csv file.')
# # parser.add_argument('--output_dir', type=Path, default="processed",
# # help='Directory for processed wav files')
# # args = parser.parse_args()
# # print(args)
# # reader = RAVDESS(data_root_path=args.data_dir,
# # output_filename=args.output_file)
# # columns = ['Utterance_ID',
# # 'Time_Start',
# # 'Time-End',
# # 'Annotations']
|