File size: 2,961 Bytes
e31ac90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""emotion_chinese_english dataset: A multilingual emotion dataset of wilde's children's literature"""
import datasets
_DESCRIPTION = """\
The emotion_chinese_english dataset is a multilingual emotion dataset annotated by language experts under a project. \
The dataset can be used for tasks such as multilingual (Chinese and English) emotion classification and identification.
"""
_HOMEPAGE = "https://github.com/nana-lyj/emotion_chinese_english"
_BASE_URL = "https://github.com/nana-lyj/emotion_chinese_english/tree/main/data/"
_URLS = {
"train": f"{_BASE_URL}/train.tsv",
"dev": f"{_BASE_URL}/dev.tsv",
"test": f"{_BASE_URL}/test.tsv",
}
_LABEL_MAPPING = {0, 1, 2, 3, 4, 5, 6, 7, 8}
class WildeEmotion(datasets.GeneratorBasedBuilder):
"""emotion_chinese_english dataset: A multilingual emotion dataset of wilde's children's literature"""
VERSION = datasets.Version("1.0.0")
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("int32"),
"sentence": datasets.Value("string"),
"label": datasets.ClassLabel(names=["joy", "sadness", "anger", "fear", "trust", "disgust", "surprise", "anticipation", "other"]),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
)
def _split_generators(self, dl_manager):
downloaded_files = dl_manager.download(_URLS)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
]
def _generate_examples(self, filepath):
with open(filepath, encoding="utf-8") as f:
lines = f.readlines()
for line in lines:
fields = line.strip().split("\t")
idx, verse_text, label = fields
label = _LABEL_MAPPING[int(label)]
yield int(idx), {"id": int(idx), "sentence": verse_text, "label": label}
|