|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""BilingualChildrenEmo dataset: A multilingual emotion dataset of wilde's children's literature""" |
|
|
|
|
|
import datasets |
|
|
|
|
|
_DESCRIPTION = """\ |
|
The BilingualChildrenEmo dataset is a multilingual emotion dataset annotated by language experts under a project. \ |
|
The dataset can be used for tasks such as multilingual (Chinese and English) emotion classification and identification. |
|
""" |
|
|
|
|
|
_HOMEPAGE = "https://github.com/nana-lyj/BilingualChildrenEmo" |
|
|
|
_URLS = { |
|
"train": f"https://raw.githubusercontent.com/nana-lyj/BilingualChildrenEmo/main/data/train.tsv", |
|
"dev": f"https://raw.githubusercontent.com/nana-lyj/BilingualChildrenEmo/main/data/dev.tsv", |
|
"test": f"https://raw.githubusercontent.com/nana-lyj/BilingualChildrenEmo/main/data/test.tsv", |
|
} |
|
|
|
_LABEL_MAPPING = {0: 0, 1: 1, 2: 2, 3: 3, 4: 4} |
|
|
|
|
|
class BilingualChildrenEmo(datasets.GeneratorBasedBuilder): |
|
"""BilingualChildrenEmo dataset: A multilingual emotion dataset of wilde's children's literature""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("int32"), |
|
"sentence": datasets.Value("string"), |
|
"label": datasets.ClassLabel(names=["joy", "sadness", "anger", "fear", "love"]), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_files = dl_manager.download(_URLS) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
with open(filepath, encoding="utf-8") as f: |
|
lines = f.readlines() |
|
for line in lines: |
|
fields = line.strip().split("\t") |
|
idx, sentence, label = fields |
|
label = _LABEL_MAPPING[int(label)] |
|
yield int(idx), {"id": int(idx), "sentence": sentence, "label": label} |
|
|