Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
lhoestq HF staff commited on
Commit
5132a86
1 Parent(s): 320d96e

Delete legacy dataset_infos.json

Browse files
Files changed (1) hide show
  1. dataset_infos.json +0 -392
dataset_infos.json DELETED
@@ -1,392 +0,0 @@
1
- {
2
- "all_languages": {
3
- "description": "The dataset contains sentences from Amazon customer reviews (sampled from Amazon product review dataset) annotated for counterfactual detection (CFD) binary classification. Counterfactual statements describe events that did not or cannot take place. Counterfactual statements may be identified as statements of the form \u2013 If p was true, then q would be true (i.e. assertions whose antecedent (p) and consequent (q) are known or assumed to be false).\n",
4
- "citation": "@misc{oneill2021i,\n title={I Wish I Would Have Loved This One, But I Didn't -- A Multilingual Dataset for Counterfactual Detection in Product Reviews},\n author={James O'Neill and Polina Rozenshtein and Ryuichi Kiryo and Motoko Kubota and Danushka Bollegala},\n year={2021},\n eprint={2104.06893},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n",
5
- "homepage": "https://github.com/amazon-research/amazon-multilingual-counterfactual-dataset",
6
- "license": "CC BY-SA 4.0",
7
- "features": {
8
- "text": {
9
- "dtype": "string",
10
- "id": null,
11
- "_type": "Value"
12
- },
13
- "label": {
14
- "dtype": "int32",
15
- "id": null,
16
- "_type": "Value"
17
- },
18
- "label_text": {
19
- "dtype": "string",
20
- "id": null,
21
- "_type": "Value"
22
- }
23
- },
24
- "post_processed": null,
25
- "supervised_keys": null,
26
- "task_templates": null,
27
- "builder_name": "amazon_counterfactual",
28
- "config_name": "all_languages",
29
- "version": {
30
- "version_str": "1.0.0",
31
- "description": "",
32
- "major": 1,
33
- "minor": 0,
34
- "patch": 0
35
- },
36
- "splits": {
37
- "train": {
38
- "name": "train",
39
- "num_bytes": 3304369,
40
- "num_examples": 23218,
41
- "dataset_name": "amazon_counterfactual"
42
- },
43
- "validation": {
44
- "name": "validation",
45
- "num_bytes": 279231,
46
- "num_examples": 1933,
47
- "dataset_name": "amazon_counterfactual"
48
- },
49
- "test": {
50
- "name": "test",
51
- "num_bytes": 552017,
52
- "num_examples": 3872,
53
- "dataset_name": "amazon_counterfactual"
54
- }
55
- },
56
- "download_checksums": {
57
- "data/DE_train.tsv": {
58
- "num_bytes": 705786,
59
- "checksum": "52710850d8bef30422421f4ca238a4d3e76d44e1e01e2458320b949cd66fbcd1"
60
- },
61
- "data/EN_train.tsv": {
62
- "num_bytes": 444664,
63
- "checksum": "fa1d3db89f133725011f022e1e0bb9ba147b0e9b8b38e15f832ad6192070f7d1"
64
- },
65
- "data/EN-ext_train.tsv": {
66
- "num_bytes": 857747,
67
- "checksum": "eb741daf73fec09af23cb194b6424f533c96280770c7c8a60d87b211a0ae6f72"
68
- },
69
- "data/JP_train.tsv": {
70
- "num_bytes": 713547,
71
- "checksum": "b836056ff3c13c02f56cd5e8d0841e1de45e50f1cc89da10cf42d8c7c5d910a1"
72
- },
73
- "data/DE_valid.tsv": {
74
- "num_bytes": 60990,
75
- "checksum": "677831289a71ebba856dfaecec92dfc9dfade9a954f8e50c923407a1fcda981a"
76
- },
77
- "data/EN_valid.tsv": {
78
- "num_bytes": 37707,
79
- "checksum": "47c981cd724394a45c091998ba9fb553ea5c9159aae228b5009ac32a1e51d6be"
80
- },
81
- "data/EN-ext_valid.tsv": {
82
- "num_bytes": 71464,
83
- "checksum": "3e054c3c83e893cbec0640aeb2d79bf8fabe1040951d127da3f2fa9a69c05002"
84
- },
85
- "data/JP_valid.tsv": {
86
- "num_bytes": 60656,
87
- "checksum": "8ab8efeaa2c271b0b96a74e4c2e3f4cd6b2adc3d588e43c76891f6a259890f11"
88
- },
89
- "data/DE_test.tsv": {
90
- "num_bytes": 120712,
91
- "checksum": "ccfb853849a85ea747fbb435bad7c50336bd2c28c523be4479535a8872870476"
92
- },
93
- "data/EN_test.tsv": {
94
- "num_bytes": 73457,
95
- "checksum": "ca0bbbc8d32e795526b21eba31c6b400e81c192f4d756bafa95c7b71375893d5"
96
- },
97
- "data/EN-ext_test.tsv": {
98
- "num_bytes": 142278,
99
- "checksum": "7891a0dc26417905718389402f6ea57f1a714f81bd258dbd134d5689e2fb7fd6"
100
- },
101
- "data/JP_test.tsv": {
102
- "num_bytes": 118677,
103
- "checksum": "863b45ba88f7e2d3d61f2a7ee1d6b44a11eb13c91653ae563616cc9bee2537a1"
104
- }
105
- },
106
- "download_size": 3407685,
107
- "post_processing_size": null,
108
- "dataset_size": 4135617,
109
- "size_in_bytes": 7543302
110
- },
111
- "de": {
112
- "description": "The dataset contains sentences from Amazon customer reviews (sampled from Amazon product review dataset) annotated for counterfactual detection (CFD) binary classification. Counterfactual statements describe events that did not or cannot take place. Counterfactual statements may be identified as statements of the form \u2013 If p was true, then q would be true (i.e. assertions whose antecedent (p) and consequent (q) are known or assumed to be false).\n",
113
- "citation": "@misc{oneill2021i,\n title={I Wish I Would Have Loved This One, But I Didn't -- A Multilingual Dataset for Counterfactual Detection in Product Reviews},\n author={James O'Neill and Polina Rozenshtein and Ryuichi Kiryo and Motoko Kubota and Danushka Bollegala},\n year={2021},\n eprint={2104.06893},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n",
114
- "homepage": "https://github.com/amazon-research/amazon-multilingual-counterfactual-dataset",
115
- "license": "CC BY-SA 4.0",
116
- "features": {
117
- "text": {
118
- "dtype": "string",
119
- "_type": "Value"
120
- },
121
- "label": {
122
- "dtype": "int32",
123
- "_type": "Value"
124
- },
125
- "label_text": {
126
- "dtype": "string",
127
- "_type": "Value"
128
- }
129
- },
130
- "builder_name": "parquet",
131
- "dataset_name": "amazon_counterfactual",
132
- "config_name": "de",
133
- "version": {
134
- "version_str": "1.0.0",
135
- "major": 1,
136
- "minor": 0,
137
- "patch": 0
138
- },
139
- "splits": {
140
- "train": {
141
- "name": "train",
142
- "num_bytes": 839355,
143
- "num_examples": 5600,
144
- "dataset_name": null
145
- },
146
- "validation": {
147
- "name": "validation",
148
- "num_bytes": 72051,
149
- "num_examples": 466,
150
- "dataset_name": null
151
- },
152
- "test": {
153
- "name": "test",
154
- "num_bytes": 142977,
155
- "num_examples": 934,
156
- "dataset_name": null
157
- }
158
- },
159
- "download_size": 610356,
160
- "dataset_size": 1054383,
161
- "size_in_bytes": 1664739
162
- },
163
- "en": {
164
- "description": "The dataset contains sentences from Amazon customer reviews (sampled from Amazon product review dataset) annotated for counterfactual detection (CFD) binary classification. Counterfactual statements describe events that did not or cannot take place. Counterfactual statements may be identified as statements of the form \u2013 If p was true, then q would be true (i.e. assertions whose antecedent (p) and consequent (q) are known or assumed to be false).\n",
165
- "citation": "@misc{oneill2021i,\n title={I Wish I Would Have Loved This One, But I Didn't -- A Multilingual Dataset for Counterfactual Detection in Product Reviews},\n author={James O'Neill and Polina Rozenshtein and Ryuichi Kiryo and Motoko Kubota and Danushka Bollegala},\n year={2021},\n eprint={2104.06893},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n",
166
- "homepage": "https://github.com/amazon-research/amazon-multilingual-counterfactual-dataset",
167
- "license": "CC BY-SA 4.0",
168
- "features": {
169
- "text": {
170
- "dtype": "string",
171
- "_type": "Value"
172
- },
173
- "label": {
174
- "dtype": "int32",
175
- "_type": "Value"
176
- },
177
- "label_text": {
178
- "dtype": "string",
179
- "_type": "Value"
180
- }
181
- },
182
- "builder_name": "parquet",
183
- "dataset_name": "amazon_counterfactual",
184
- "config_name": "en",
185
- "version": {
186
- "version_str": "1.0.0",
187
- "major": 1,
188
- "minor": 0,
189
- "patch": 0
190
- },
191
- "splits": {
192
- "train": {
193
- "name": "train",
194
- "num_bytes": 548743,
195
- "num_examples": 4018,
196
- "dataset_name": null
197
- },
198
- "validation": {
199
- "name": "validation",
200
- "num_bytes": 46405,
201
- "num_examples": 335,
202
- "dataset_name": null
203
- },
204
- "test": {
205
- "name": "test",
206
- "num_bytes": 90712,
207
- "num_examples": 670,
208
- "dataset_name": null
209
- }
210
- },
211
- "download_size": 382768,
212
- "dataset_size": 685860,
213
- "size_in_bytes": 1068628
214
- },
215
- "jp": {
216
- "description": "The dataset contains sentences from Amazon customer reviews (sampled from Amazon product review dataset) annotated for counterfactual detection (CFD) binary classification. Counterfactual statements describe events that did not or cannot take place. Counterfactual statements may be identified as statements of the form \u2013 If p was true, then q would be true (i.e. assertions whose antecedent (p) and consequent (q) are known or assumed to be false).\n",
217
- "citation": "@misc{oneill2021i,\n title={I Wish I Would Have Loved This One, But I Didn't -- A Multilingual Dataset for Counterfactual Detection in Product Reviews},\n author={James O'Neill and Polina Rozenshtein and Ryuichi Kiryo and Motoko Kubota and Danushka Bollegala},\n year={2021},\n eprint={2104.06893},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n",
218
- "homepage": "https://github.com/amazon-research/amazon-multilingual-counterfactual-dataset",
219
- "license": "CC BY-SA 4.0",
220
- "features": {
221
- "text": {
222
- "dtype": "string",
223
- "id": null,
224
- "_type": "Value"
225
- },
226
- "label": {
227
- "dtype": "int32",
228
- "id": null,
229
- "_type": "Value"
230
- },
231
- "label_text": {
232
- "dtype": "string",
233
- "id": null,
234
- "_type": "Value"
235
- }
236
- },
237
- "post_processed": null,
238
- "supervised_keys": null,
239
- "task_templates": null,
240
- "builder_name": "amazon_counterfactual",
241
- "config_name": "jp",
242
- "version": {
243
- "version_str": "1.0.0",
244
- "description": "",
245
- "major": 1,
246
- "minor": 0,
247
- "patch": 0
248
- },
249
- "splits": {
250
- "train": {
251
- "name": "train",
252
- "num_bytes": 862556,
253
- "num_examples": 5600,
254
- "dataset_name": "amazon_counterfactual"
255
- },
256
- "validation": {
257
- "name": "validation",
258
- "num_bytes": 73027,
259
- "num_examples": 466,
260
- "dataset_name": "amazon_counterfactual"
261
- },
262
- "test": {
263
- "name": "test",
264
- "num_bytes": 143458,
265
- "num_examples": 934,
266
- "dataset_name": "amazon_counterfactual"
267
- }
268
- },
269
- "download_checksums": {
270
- "data/JP_train.tsv": {
271
- "num_bytes": 713547,
272
- "checksum": "b836056ff3c13c02f56cd5e8d0841e1de45e50f1cc89da10cf42d8c7c5d910a1"
273
- },
274
- "data/JP_valid.tsv": {
275
- "num_bytes": 60656,
276
- "checksum": "8ab8efeaa2c271b0b96a74e4c2e3f4cd6b2adc3d588e43c76891f6a259890f11"
277
- },
278
- "data/JP_test.tsv": {
279
- "num_bytes": 118677,
280
- "checksum": "863b45ba88f7e2d3d61f2a7ee1d6b44a11eb13c91653ae563616cc9bee2537a1"
281
- }
282
- },
283
- "download_size": 892880,
284
- "post_processing_size": null,
285
- "dataset_size": 1079041,
286
- "size_in_bytes": 1971921
287
- },
288
- "en-ext": {
289
- "description": "The dataset contains sentences from Amazon customer reviews (sampled from Amazon product review dataset) annotated for counterfactual detection (CFD) binary classification. Counterfactual statements describe events that did not or cannot take place. Counterfactual statements may be identified as statements of the form \u2013 If p was true, then q would be true (i.e. assertions whose antecedent (p) and consequent (q) are known or assumed to be false).\n",
290
- "citation": "@misc{oneill2021i,\n title={I Wish I Would Have Loved This One, But I Didn't -- A Multilingual Dataset for Counterfactual Detection in Product Reviews},\n author={James O'Neill and Polina Rozenshtein and Ryuichi Kiryo and Motoko Kubota and Danushka Bollegala},\n year={2021},\n eprint={2104.06893},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n",
291
- "homepage": "https://github.com/amazon-research/amazon-multilingual-counterfactual-dataset",
292
- "license": "CC BY-SA 4.0",
293
- "features": {
294
- "text": {
295
- "dtype": "string",
296
- "_type": "Value"
297
- },
298
- "label": {
299
- "dtype": "int32",
300
- "_type": "Value"
301
- },
302
- "label_text": {
303
- "dtype": "string",
304
- "_type": "Value"
305
- }
306
- },
307
- "builder_name": "parquet",
308
- "dataset_name": "amazon_counterfactual",
309
- "config_name": "en-ext",
310
- "version": {
311
- "version_str": "1.0.0",
312
- "major": 1,
313
- "minor": 0,
314
- "patch": 0
315
- },
316
- "splits": {
317
- "train": {
318
- "name": "train",
319
- "num_bytes": 1053699,
320
- "num_examples": 8000,
321
- "dataset_name": null
322
- },
323
- "validation": {
324
- "name": "validation",
325
- "num_bytes": 87748,
326
- "num_examples": 666,
327
- "dataset_name": null
328
- },
329
- "test": {
330
- "name": "test",
331
- "num_bytes": 174870,
332
- "num_examples": 1334,
333
- "dataset_name": null
334
- }
335
- },
336
- "download_size": 731478,
337
- "dataset_size": 1316317,
338
- "size_in_bytes": 2047795
339
- },
340
- "ja": {
341
- "description": "The dataset contains sentences from Amazon customer reviews (sampled from Amazon product review dataset) annotated for counterfactual detection (CFD) binary classification. Counterfactual statements describe events that did not or cannot take place. Counterfactual statements may be identified as statements of the form \u2013 If p was true, then q would be true (i.e. assertions whose antecedent (p) and consequent (q) are known or assumed to be false).\n",
342
- "citation": "@misc{oneill2021i,\n title={I Wish I Would Have Loved This One, But I Didn't -- A Multilingual Dataset for Counterfactual Detection in Product Reviews},\n author={James O'Neill and Polina Rozenshtein and Ryuichi Kiryo and Motoko Kubota and Danushka Bollegala},\n year={2021},\n eprint={2104.06893},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n",
343
- "homepage": "https://github.com/amazon-research/amazon-multilingual-counterfactual-dataset",
344
- "license": "CC BY-SA 4.0",
345
- "features": {
346
- "text": {
347
- "dtype": "string",
348
- "_type": "Value"
349
- },
350
- "label": {
351
- "dtype": "int32",
352
- "_type": "Value"
353
- },
354
- "label_text": {
355
- "dtype": "string",
356
- "_type": "Value"
357
- }
358
- },
359
- "builder_name": "parquet",
360
- "dataset_name": "amazon_counterfactual",
361
- "config_name": "ja",
362
- "version": {
363
- "version_str": "1.0.0",
364
- "major": 1,
365
- "minor": 0,
366
- "patch": 0
367
- },
368
- "splits": {
369
- "train": {
370
- "name": "train",
371
- "num_bytes": 862548,
372
- "num_examples": 5600,
373
- "dataset_name": null
374
- },
375
- "validation": {
376
- "name": "validation",
377
- "num_bytes": 73019,
378
- "num_examples": 466,
379
- "dataset_name": null
380
- },
381
- "test": {
382
- "name": "test",
383
- "num_bytes": 143450,
384
- "num_examples": 934,
385
- "dataset_name": null
386
- }
387
- },
388
- "download_size": 564439,
389
- "dataset_size": 1079017,
390
- "size_in_bytes": 1643456
391
- }
392
- }