Datasets:

Modalities:
Audio
Text
ArXiv:
Libraries:
Datasets
License:
reach-vb HF staff commited on
Commit
1ddf8ea
1 Parent(s): 0d6249d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -7
README.md CHANGED
@@ -376,26 +376,26 @@ Abkhaz, Arabic, Armenian, Assamese, Asturian, Azerbaijani, Basaa, Bashkir, Basqu
376
 
377
  ### How to use
378
 
379
- You should be able to plug and play this dataset in your existing Machine Learning workflow as follows:
380
 
381
- You can download the entire dataset (or a particular split) to your local drive by using the `load_dataset` function.
382
  ```python
383
  from datasets import load_dataset
384
 
385
  CV_11_hi_train = load_dataset("mozilla-foundation/common_voice_11_0", "hi", split="train")
386
  ```
387
 
388
- Using datasets, you can also stream the dataset on-the-fly by adding a `streaming=True` argument to the `load_dataset` function call. Loading a dataset in streaming mode allows one to iterate over the dataset without downloading it on disk.
389
  ```python
390
  from datasets import load_dataset
391
 
392
  CV_11_hi_train_stream = load_dataset("mozilla-foundation/common_voice_11_0", "hi", split="train", streaming=True)
393
 
394
- # You'll now be able to iterate through the stream and fetch individual data points as you need them
395
  print(next(iter(CV_11_hi_train_stream)))
396
  ```
397
 
398
- Bonus: You can create a pytorch dataloader with directly with the downloaded/ streamed datasets.
399
  ```python
400
  from datasets import load_dataset
401
  from torch.utils.data.sampler import BatchSampler, RandomSampler
@@ -405,7 +405,7 @@ batch_sampler = BatchSampler(RandomSampler(ds), batch_size=32, drop_last=False)
405
  dataloader = DataLoader(ds, batch_sampler=batch_sampler)
406
  ```
407
 
408
- and, for streaming datasets
409
  ```python
410
  from datasets import load_dataset
411
  from torch.utils.data import DataLoader
@@ -416,7 +416,7 @@ dataloader = DataLoader(ds, batch_size=32)
416
 
417
  ### Example scripts
418
 
419
-
420
 
421
  ## Dataset Structure
422
 
 
376
 
377
  ### How to use
378
 
379
+ To get started, you should be able to plug-and-play this dataset in your existing Machine Learning workflow
380
 
381
+ The entire dataset (or a particular split) can be downloaded to your local drive by using the `load_dataset` function.
382
  ```python
383
  from datasets import load_dataset
384
 
385
  CV_11_hi_train = load_dataset("mozilla-foundation/common_voice_11_0", "hi", split="train")
386
  ```
387
 
388
+ Using the datasets library, you can stream the dataset on-the-fly by adding a `streaming=True` argument to the `load_dataset` function call. Loading a dataset in streaming mode allows one to iterate over the dataset without downloading it on disk.
389
  ```python
390
  from datasets import load_dataset
391
 
392
  CV_11_hi_train_stream = load_dataset("mozilla-foundation/common_voice_11_0", "hi", split="train", streaming=True)
393
 
394
+ # Iterate through the stream and fetch individual data points as you need them
395
  print(next(iter(CV_11_hi_train_stream)))
396
  ```
397
 
398
+ *Bonus*: Create a PyTorch dataloader with directly with the downloaded/ streamed datasets.
399
  ```python
400
  from datasets import load_dataset
401
  from torch.utils.data.sampler import BatchSampler, RandomSampler
 
405
  dataloader = DataLoader(ds, batch_sampler=batch_sampler)
406
  ```
407
 
408
+ ofcourse, you can do the same with streaming datasets as well.
409
  ```python
410
  from datasets import load_dataset
411
  from torch.utils.data import DataLoader
 
416
 
417
  ### Example scripts
418
 
419
+ Train your own CTC or Seq2Seq Automatic Speech Recognition models with `transformers` - [here](https://github.com/huggingface/transformers/tree/main/examples/pytorch/speech-recognition).
420
 
421
  ## Dataset Structure
422