A dataset for benchmarking keyphrase extraction and generation techniques from long document English scientific papers. For more details about the dataset please refer the original paper - [](). Data source - []() ## Dataset Summary ## Dataset Structure ### Data Fields - **id**: unique identifier of the document. - **sections**: list of all the sections present in the document. - **sec_text**: list of white space separated list of words present in each section. - **sec_bio_tags**: list of BIO tags of white space separated list of words present in each section. - **extractive_keyphrases**: List of all the present keyphrases. - **abstractive_keyphrase**: List of all the absent keyphrases. ### Data Splits |Split| #datapoints | |--|--| | Train-Small | 20,000 | | Train-Medium | 50,000 | | Train-Large | 90,019 | | Test | 3413 | | Validation | 3339 | ## Usage ### Small Dataset ```python from datasets import load_dataset # get small dataset dataset = load_dataset("midas/ldkp3k", "small") def order_sections(sample): """ corrects the order in which different sections appear in the document. resulting order is: title, abstract, other sections in the body """ sections = [] sec_text = [] sec_bio_tags = [] if "title" in sample["sections"]: title_idx = sample["sections"].index("title") sections.append(sample["sections"].pop(title_idx)) sec_text.append(sample["sec_text"].pop(title_idx)) sec_bio_tags.append(sample["sec_bio_tags"].pop(title_idx)) if "abstract" in sample["sections"]: abstract_idx = sample["sections"].index("abstract") sections.append(sample["sections"].pop(abstract_idx)) sec_text.append(sample["sec_text"].pop(abstract_idx)) sec_bio_tags.append(sample["sec_bio_tags"].pop(abstract_idx)) sections += sample["sections"] sec_text += sample["sec_text"] sec_bio_tags += sample["sec_bio_tags"] return sections, sec_text, sec_bio_tags # sample from the train split print("Sample from train data split") train_sample = dataset["train"][0] sections, sec_text, sec_bio_tags = order_sections(train_sample) print("Fields in the sample: ", [key for key in train_sample.keys()]) print("Section names: ", sections) print("Tokenized Document: ", sec_text) print("Document BIO Tags: ", sec_bio_tags) print("Extractive/present Keyphrases: ", train_sample["extractive_keyphrases"]) print("Abstractive/absent Keyphrases: ", train_sample["abstractive_keyphrases"]) print("\n-----------\n") # sample from the validation split print("Sample from validation data split") validation_sample = dataset["validation"][0] sections, sec_text, sec_bio_tags = order_sections(validation_sample) print("Fields in the sample: ", [key for key in validation_sample.keys()]) print("Section names: ", sections) print("Tokenized Document: ", sec_text) print("Document BIO Tags: ", sec_bio_tags) print("Extractive/present Keyphrases: ", validation_sample["extractive_keyphrases"]) print("Abstractive/absent Keyphrases: ", validation_sample["abstractive_keyphrases"]) print("\n-----------\n") # sample from the test split print("Sample from test data split") test_sample = dataset["test"][0] sections, sec_text, sec_bio_tags = order_sections(test_sample) print("Fields in the sample: ", [key for key in test_sample.keys()]) print("Section names: ", sections) print("Tokenized Document: ", sec_text) print("Document BIO Tags: ", sec_bio_tags) print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"]) print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"]) print("\n-----------\n") ``` **Output** ```bash ``` ### Medium Dataset ```python from datasets import load_dataset # get medium dataset dataset = load_dataset("midas/ldkp3k", "medium") ``` ### Large Dataset ```python from datasets import load_dataset # get large dataset dataset = load_dataset("midas/ldkp3k", "large") ``` ## Citation Information Please cite the works below if you use this dataset in your work. ``` ``` ## Contributions Thanks to [@debanjanbhucs](https://github.com/debanjanbhucs), [@dibyaaaaax](https://github.com/dibyaaaaax), [@UmaGunturi](https://github.com/UmaGunturi) and [@ad6398](https://github.com/ad6398) for adding this dataset