Datasets:

Modalities:
Text
Libraries:
Datasets
dibyaaaaax commited on
Commit
4586034
1 Parent(s): a630460

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +129 -0
README.md ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Dataset Summary
2
+
3
+ A dataset for benchmarking keyphrase extraction and generation techniques from abstracts of english scientific papers. For more details about the dataset please refer the original paper - [https://aclanthology.org/D14-1150.pdf](https://aclanthology.org/D14-1150.pdf)
4
+ Original source of the data - []()
5
+
6
+
7
+ ## Dataset Structure
8
+
9
+
10
+ ### Data Fields
11
+
12
+ - **id**: unique identifier of the document.
13
+ - **document**: Whitespace separated list of words in the document.
14
+ - **doc_bio_tags**: BIO tags for each word in the document. B stands for the beginning of a keyphrase and I stands for inside the keyphrase. O stands for outside the keyphrase and represents the word that isn't a part of the keyphrase at all.
15
+ - **extractive_keyphrases**: List of all the present keyphrases.
16
+ - **abstractive_keyphrase**: List of all the absent keyphrases.
17
+
18
+
19
+ ### Data Splits
20
+
21
+ |Split| #datapoints |
22
+ |--|--|
23
+ | Test | 755 |
24
+
25
+
26
+ ## Usage
27
+
28
+ ### Full Dataset
29
+
30
+ ```python
31
+ from datasets import load_dataset
32
+
33
+ # get entire dataset
34
+ dataset = load_dataset("midas/kdd", "raw")
35
+
36
+ # sample from the test split
37
+ print("Sample from test dataset split")
38
+ test_sample = dataset["test"][0]
39
+ print("Fields in the sample: ", [key for key in test_sample.keys()])
40
+ print("Tokenized Document: ", test_sample["document"])
41
+ print("Document BIO Tags: ", test_sample["doc_bio_tags"])
42
+ print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"])
43
+ print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"])
44
+ print("\n-----------\n")
45
+ ```
46
+ **Output**
47
+
48
+ ```bash
49
+ Sample from test data split
50
+ Fields in the sample: ['id', 'document', 'doc_bio_tags', 'extractive_keyphrases', 'abstractive_keyphrases', 'other_metadata']
51
+ Tokenized Document: ['Discovering', 'roll-up', 'dependencies']
52
+ Document BIO Tags: ['O', 'O', 'O']
53
+ Extractive/present Keyphrases: []
54
+ Abstractive/absent Keyphrases: ['logical design']
55
+
56
+ -----------
57
+
58
+ ```
59
+
60
+ ### Keyphrase Extraction
61
+ ```python
62
+ from datasets import load_dataset
63
+
64
+ # get the dataset only for keyphrase extraction
65
+ dataset = load_dataset("midas/kdd", "extraction")
66
+
67
+ print("Samples for Keyphrase Extraction")
68
+
69
+ # sample from the test split
70
+ print("Sample from test data split")
71
+ test_sample = dataset["test"][0]
72
+ print("Fields in the sample: ", [key for key in test_sample.keys()])
73
+ print("Tokenized Document: ", test_sample["document"])
74
+ print("Document BIO Tags: ", test_sample["doc_bio_tags"])
75
+ print("\n-----------\n")
76
+ ```
77
+
78
+ ### Keyphrase Generation
79
+ ```python
80
+ # get the dataset only for keyphrase generation
81
+ dataset = load_dataset("midas/kdd", "generation")
82
+
83
+ print("Samples for Keyphrase Generation")
84
+
85
+ # sample from the test split
86
+ print("Sample from test data split")
87
+ test_sample = dataset["test"][0]
88
+ print("Fields in the sample: ", [key for key in test_sample.keys()])
89
+ print("Tokenized Document: ", test_sample["document"])
90
+ print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"])
91
+ print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"])
92
+ print("\n-----------\n")
93
+ ```
94
+
95
+ ## Citation Information
96
+ ```
97
+ @inproceedings{caragea-etal-2014-citation,
98
+
99
+ title = "Citation-Enhanced Keyphrase Extraction from Research Papers: A Supervised Approach",
100
+
101
+ author = "Caragea, Cornelia and
102
+
103
+ Bulgarov, Florin Adrian and
104
+
105
+ Godea, Andreea and
106
+
107
+ Das Gollapalli, Sujatha",
108
+
109
+ booktitle = "Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing ({EMNLP})",
110
+
111
+ month = oct,
112
+
113
+ year = "2014",
114
+
115
+ address = "Doha, Qatar",
116
+
117
+ publisher = "Association for Computational Linguistics",
118
+
119
+ url = "https://aclanthology.org/D14-1150",
120
+
121
+ doi = "10.3115/v1/D14-1150",
122
+
123
+ pages = "1435--1446",
124
+
125
+ }
126
+ ```
127
+
128
+ ## Contributions
129
+ Thanks to [@debanjanbhucs](https://github.com/debanjanbhucs), [@dibyaaaaax](https://github.com/dibyaaaaax) and [@ad6398](https://github.com/ad6398) for adding this dataset