Datasets:

Languages:
Japanese
License:
Kosuke-Yamada commited on
Commit
d07ecd5
1 Parent(s): ca19cf5

add a code to acquire dataset

Browse files
Files changed (2) hide show
  1. README.md +21 -0
  2. ner-wikipedia-dataset.py +180 -0
README.md ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - crowdsourced
4
+ language:
5
+ - ja
6
+ language_creators:
7
+ - crowdsourced
8
+ license: []
9
+ multilinguality:
10
+ - monolingual
11
+ pretty_name: ner-wikipedia-dataset
12
+ size_categories:
13
+ - 1K<n<10K
14
+ source_datasets:
15
+ - original
16
+ tags:
17
+ - NER
18
+ task_categories:
19
+ - token-classification
20
+ task_ids: []
21
+ ---
ner-wikipedia-dataset.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # TODO: Address all TODOs and remove all explanatory comments
15
+ """TODO: Add a description here."""
16
+
17
+ import csv
18
+ import json
19
+ import os
20
+ import random
21
+
22
+ import datasets
23
+
24
+ # TODO: Add BibTeX citation
25
+ # Find for instance the citation on arxiv or on the dataset repo/website
26
+ _CITATION = """\
27
+ @InProceedings{huggingface:dataset,
28
+ title = {A great new dataset},
29
+ author={huggingface, Inc.
30
+ },
31
+ year={2020}
32
+ }
33
+ """
34
+
35
+ # TODO: Add description of the dataset here
36
+ # You can copy an official description
37
+ _DESCRIPTION = """\
38
+ This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
39
+ """
40
+
41
+ # TODO: Add a link to an official homepage for the dataset here
42
+ _HOMEPAGE = ""
43
+
44
+ # TODO: Add the licence for the dataset here if you can find it
45
+ _LICENSE = ""
46
+
47
+ # TODO: Add link to the official dataset URLs here
48
+ # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
49
+ # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
50
+ _URL = {
51
+ "all": "https://raw.githubusercontent.com/stockmarkteam/ner-wikipedia-dataset/main/ner.json",
52
+ }
53
+
54
+
55
+ class NerWikipediaDatasetConfig(datasets.BuilderConfig):
56
+ """BuilderConfig for MS MARCO."""
57
+
58
+ def __init__(self, **kwargs):
59
+ """BuilderConfig for MS MARCO
60
+ Args:
61
+ **kwargs: keyword arguments forwarded to super.
62
+ """
63
+ super(NerWikipediaDatasetConfig, self).__init__(**kwargs)
64
+
65
+
66
+ # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
67
+ class NerWikipediaDataset(datasets.GeneratorBasedBuilder):
68
+ """TODO: Short description of my dataset."""
69
+
70
+ VERSION = datasets.Version("1.1.0")
71
+
72
+ # This is an example of a dataset with multiple configurations.
73
+ # If you don't want/need to define several sub-sets in your dataset,
74
+ # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
75
+
76
+ # If you need to make complex sub-parts in the datasets with configurable options
77
+ # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
78
+ # BUILDER_CONFIG_CLASS = MyBuilderConfig
79
+
80
+ # You will be able to load one or the other configurations in the following list with
81
+ # data = datasets.load_dataset('my_dataset', 'first_domain')
82
+ # data = datasets.load_dataset('my_dataset', 'second_domain')
83
+ BUILDER_CONFIGS = [
84
+ datasets.BuilderConfig(
85
+ name="all",
86
+ version=VERSION,
87
+ description="This part of my dataset covers a first domain",
88
+ ),
89
+ ]
90
+
91
+ DEFAULT_CONFIG_NAME = "all" # It's not mandatory to have a default configuration. Just use one if it make sense.
92
+
93
+ def _info(self):
94
+ # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
95
+ return datasets.DatasetInfo(
96
+ # This is the description that will appear on the datasets page.
97
+ description=_DESCRIPTION,
98
+ # This defines the different columns of the dataset and their types
99
+ features=datasets.Features(
100
+ {
101
+ "curid": datasets.Value("int32"),
102
+ "text": datasets.Value("string"),
103
+ "entities": datasets.Sequence(
104
+ feature={
105
+ "name": datasets.Value(dtype="string"),
106
+ "span": datasets.Sequence(
107
+ feature=datasets.Value(dtype="int32"), length=2
108
+ ),
109
+ "type": datasets.Value(dtype="string"),
110
+ },
111
+ )
112
+ # These are the features of your dataset like images, labels ...
113
+ }
114
+ ), # Here we define them above because they are different between the two configurations
115
+ # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
116
+ # specify them. They'll be used if as_supervised=True in builder.as_dataset.
117
+ # supervised_keys=("sentence", "label"),
118
+ # Homepage of the dataset for documentation
119
+ homepage=_HOMEPAGE,
120
+ # License for the dataset if available
121
+ license=_LICENSE,
122
+ # Citation for the dataset
123
+ citation=_CITATION,
124
+ )
125
+
126
+ def _split_generators(self, dl_manager):
127
+ # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
128
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
129
+
130
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
131
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
132
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
133
+ data_dir = dl_manager.download_and_extract(_URL)
134
+
135
+ # ダウンロードしたファイルを読み込み、全てのデータを取得
136
+ with open(data_dir, "r", encoding="utf-8") as f:
137
+ data = json.load(f)
138
+
139
+ # データをランダムにシャッフルする
140
+ random.seed(42)
141
+ random.shuffle(data)
142
+
143
+ # 学習データ、開発データ、テストデータに分割する
144
+ train_ratio = 0.8
145
+ validation_ratio = 0.1
146
+ num_examples = len(data)
147
+ train_split = int(num_examples * train_ratio)
148
+ validation_split = int(num_examples * (train_ratio + validation_ratio))
149
+ train_data = data[:train_split]
150
+ validation_data = data[train_split:validation_split]
151
+ test_data = data[validation_split:]
152
+
153
+ return [
154
+ datasets.SplitGenerator(
155
+ name=datasets.Split.ALL, gen_kwargs={"data": data, "split": "all"}
156
+ ),
157
+ datasets.SplitGenerator(
158
+ name=datasets.Split.TRAIN,
159
+ gen_kwargs={"data": train_data, "split": "train"},
160
+ ),
161
+ datasets.SplitGenerator(
162
+ name=datasets.Split.VALIDATION,
163
+ gen_kwargs={"data": validation_data, "split": "validation"},
164
+ ),
165
+ datasets.SplitGenerator(
166
+ name=datasets.Split.TEST,
167
+ gen_kwargs={"data": test_data, "split": "test"},
168
+ ),
169
+ ]
170
+
171
+ # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
172
+ def _generate_examples(self, data, split):
173
+ # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
174
+ # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
175
+ for key, data in enumerate(data):
176
+ yield key, {
177
+ "curid": data["curid"],
178
+ "text": data["text"],
179
+ "entities": "" if split == "test" else data["entities"],
180
+ }