lince / lince.py
system's picture
system HF staff
Update files from the datasets library (from 1.6.0)
a30a3b4
"""TODO(lince): Add a description here."""
import csv
import os
import re
import textwrap
from itertools import groupby
import datasets
_CITATION = """\
@inproceedings{aguilar-etal-2020-lince,
title = "{L}in{CE}: A Centralized Benchmark for Linguistic Code-switching Evaluation",
author = "Aguilar, Gustavo and
Kar, Sudipta and
Solorio, Thamar",
booktitle = "Proceedings of The 12th Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://www.aclweb.org/anthology/2020.lrec-1.223",
pages = "1803--1813",
language = "English",
ISBN = "979-10-95546-34-4",
}
Note that each LinCE dataset has its own citation. Please see the source to see
the correct citation for each contained dataset."""
_DESCRIPTION = """\
LinCE is a centralized Linguistic Code-switching Evaluation benchmark
(https://ritual.uh.edu/lince/) that contains data for training and evaluating
NLP systems on code-switching tasks.
"""
_LINCE_URL = "https://ritual.uh.edu/lince/libaccess/eyJ1c2VybmFtZSI6ICJodWdnaW5nZmFjZSBubHAiLCAidXNlcl9pZCI6IDExMSwgImVtYWlsIjogImR1bW15QGVtYWlsLmNvbSJ9"
_DATASET_CITATIONS = {
"lid_spaeng": textwrap.dedent(
"""
@inproceedings{molina-etal-2016-overview,
title = "Overview for the Second Shared Task on Language Identification in Code-Switched Data",
author = "Molina, Giovanni and
AlGhamdi, Fahad and
Ghoneim, Mahmoud and
Hawwari, Abdelati and
Rey-Villamizar, Nicolas and
Diab, Mona and
Solorio, Thamar",
booktitle = "Proceedings of the Second Workshop on Computational Approaches to Code Switching",
month = nov,
year = "2016",
address = "Austin, Texas",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W16-5805",
doi = "10.18653/v1/W16-5805",
pages = "40--49",
}
"""
),
"lid_hineng": textwrap.dedent(
"""
@inproceedings{mave-etal-2018-language,
title = "Language Identification and Analysis of Code-Switched Social Media Text",
author = "Mave, Deepthi and
Maharjan, Suraj and
Solorio, Thamar",
booktitle = "Proceedings of the Third Workshop on Computational Approaches to Linguistic Code-Switching",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-3206",
pages = "51--61"
}
"""
),
"lid_msaea": textwrap.dedent(
"""
@inproceedings{molina-etal-2016-overview,
title = "Overview for the Second Shared Task on Language Identification in Code-Switched Data",
author = "Molina, Giovanni and
AlGhamdi, Fahad and
Ghoneim, Mahmoud and
Hawwari, Abdelati and
Rey-Villamizar, Nicolas and
Diab, Mona and
Solorio, Thamar",
booktitle = "Proceedings of the Second Workshop on Computational Approaches to Code Switching",
month = nov,
year = "2016",
address = "Austin, Texas",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W16-5805",
doi = "10.18653/v1/W16-5805",
pages = "40--49",
}
"""
),
"lid_nepeng": textwrap.dedent(
"""
@inproceedings{solorio-etal-2014-overview,
title = "Overview for the First Shared Task on Language Identification in Code-Switched Data",
author = "Solorio, Thamar and
Blair, Elizabeth and
Maharjan, Suraj and
Bethard, Steven and
Diab, Mona and
Ghoneim, Mahmoud and
Hawwari, Abdelati and
AlGhamdi, Fahad and
Hirschberg, Julia and
Chang, Alison and
Fung, Pascale",
booktitle = "Proceedings of the First Workshop on Computational Approaches to Code Switching",
month = oct,
year = "2014",
address = "Doha, Qatar",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W14-3907",
doi = "10.3115/v1/W14-3907",
pages = "62--72",
}
"""
),
"pos_spaeng": textwrap.dedent(
"""
@inproceedings{alghamdi-etal-2016-part,
title = "Part of Speech Tagging for Code Switched Data",
author = "AlGhamdi, Fahad and
Molina, Giovanni and
Diab, Mona and
Solorio, Thamar and
Hawwari, Abdelati and
Soto, Victor and
Hirschberg, Julia",
booktitle = "Proceedings of the Second Workshop on Computational Approaches to Code Switching",
month = nov,
year = "2016",
address = "Austin, Texas",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W16-5812",
doi = "10.18653/v1/W16-5812",
pages = "98--107",
}
"""
),
"pos_hineng": textwrap.dedent(
"""
@inproceedings{singh-etal-2018-twitter,
title = "A Twitter Corpus for {H}indi-{E}nglish Code Mixed {POS} Tagging",
author = "Singh, Kushagra and
Sen, Indira and
Kumaraguru, Ponnurangam",
booktitle = "Proceedings of the Sixth International Workshop on Natural Language Processing for Social Media",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-3503",
doi = "10.18653/v1/W18-3503",
pages = "12--17"
}
"""
),
"ner_spaeng": textwrap.dedent(
"""
@inproceedings{aguilar-etal-2018-named,
title = {{Named Entity Recognition on Code-Switched Data: Overview of the CALCS 2018 Shared Task}},
author = "Aguilar, Gustavo and
AlGhamdi, Fahad and
Soto, Victor and
Diab, Mona and
Hirschberg, Julia and
Solorio, Thamar",
booktitle = {{Proceedings of the Third Workshop on Computational Approaches to Linguistic Code-Switching}},
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-3219",
pages = "138--147"
}
"""
),
"ner_msaea": textwrap.dedent(
"""
@inproceedings{aguilar-etal-2018-named,
title = {{Named Entity Recognition on Code-Switched Data: Overview of the CALCS 2018 Shared Task}},
author = "Aguilar, Gustavo and
AlGhamdi, Fahad and
Soto, Victor and
Diab, Mona and
Hirschberg, Julia and
Solorio, Thamar",
booktitle = {{Proceedings of the Third Workshop on Computational Approaches to Linguistic Code-Switching}},
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-3219",
pages = "138--147"
}
"""
),
"ner_hineng": textwrap.dedent(
"""
@inproceedings{singh-etal-2018-language,
title = "Language Identification and Named Entity Recognition in {H}inglish Code Mixed Tweets",
author = "Singh, Kushagra and
Sen, Indira and
Kumaraguru, Ponnurangam",
booktitle = "Proceedings of {ACL} 2018, Student Research Workshop",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/P18-3008",
doi = "10.18653/v1/P18-3008",
pages = "52--58",
}
"""
),
"sa_spaeng": textwrap.dedent(
"""
@inproceedings{patwa2020sentimix,
title={SemEval-2020 Task 9: Overview of Sentiment Analysis of Code-Mixed Tweets},
author="Patwa, Parth and
Aguilar, Gustavo and
Kar, Sudipta and
Pandey, Suraj and
PYKL, Srinivas and
Garrette, Dan and
Gamb{\"a}ck, Bj{\"o}rn and
Chakraborty, Tanmoy and
Solorio, Thamar and
Das, Amitava",
booktitle = "Proceedings of the 14th International Workshop on Semantic Evaluation ({S}em{E}val-2020)",
year = 2020,
month = sep,
address = "Barcelona, Spain",
publisher = "Association for Computational Linguistics"
}
"""
),
}
class LinceConfig(datasets.BuilderConfig):
"""BuilderConfig for LinCE"""
def __init__(self, colnames, classes, label_column, **kwargs):
super(LinceConfig, self).__init__(
version=datasets.Version(
"1.0.0", description="The Linguistic Code-switching Evaluation (LinCE) benchmark"
),
**kwargs,
)
self.colnames = colnames
self.classes = classes
self.label_column = label_column
class Lince(datasets.GeneratorBasedBuilder):
"""TODO(lince): Short description of the LinCE dataset."""
BUILDER_CONFIG_CLASS = LinceConfig
BUILDER_CONFIGS = [
# ==========================================================================================
# Language Identification (LID) datasets
LinceConfig(
name="lid_spaeng",
data_dir="lid_spaeng",
colnames={"words": 0, "lid": 1},
classes={"lid": ["lang1", "lang2", "ne", "fw", "ambiguous", "mixed", "other", "unk"]},
label_column="lid",
description="Spanish-English language identification dataset (Latin script)",
),
LinceConfig(
name="lid_hineng",
data_dir="lid_hineng",
colnames={"words": 0, "lid": 1},
classes={"lid": ["lang1", "lang2", "ne", "fw", "ambiguous", "mixed", "other", "unk"]},
label_column="lid",
description="Hindi-English language identification dataset (Latin script)",
),
LinceConfig(
name="lid_msaea",
data_dir="lid_msaea",
colnames={"words": 0, "lid": 1},
classes={
"lid": ["ambiguous", "lang1", "lang2", "mixed", "ne", "other"],
},
label_column="lid",
description="Modern Standard Arabic-Egyptian Arabic language identification dataset (Persian script)",
),
LinceConfig(
name="lid_nepeng",
data_dir="lid_nepeng",
colnames={"words": 0, "lid": 1},
classes={
"lid": ["ambiguous", "lang1", "lang2", "mixed", "ne", "other"],
},
label_column="lid",
description="Nepali-English language identification dataset (Latin script)",
),
# ==========================================================================================
# Part-of-Speech (POS) Tagging datasets
LinceConfig(
name="pos_spaeng",
data_dir="pos_spaeng",
colnames={"words": 0, "lid": 1, "pos": 2},
classes={
"lid": ["UNK", "eng", "eng&spa", "spa"],
"pos": [
"ADJ",
"ADP",
"ADV",
"AUX",
"CONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"UNK",
"VERB",
"X",
],
},
label_column="pos",
description="Spanish-English part-of-Speech tagging dataset (Latin script)",
),
LinceConfig(
name="pos_hineng",
data_dir="pos_hineng",
colnames={"words": 0, "lid": 1, "pos": 2},
classes={
"lid": ["en", "hi", "rest"],
"pos": [
"ADJ",
"ADP",
"ADV",
"CONJ",
"DET",
"NOUN",
"NUM",
"PART",
"PART_NEG",
"PRON",
"PRON_WH",
"PROPN",
"VERB",
"X",
],
},
label_column="pos",
description="Hindi-English part-of-Speech tagging dataset (Latin script)",
),
# ==========================================================================================
# Named Entity Recongition (NER) datasets
LinceConfig(
name="ner_spaeng",
data_dir="ner_spaeng",
colnames={"words": 0, "lid": 1, "ner": 2},
classes={
"lid": ["lang1", "lang2", "ne", "fw", "ambiguous", "mixed", "other", "unk"],
"ner": [
"O",
"B-PER",
"I-PER",
"B-LOC",
"I-LOC",
"B-ORG",
"I-ORG",
"B-PROD",
"I-PROD",
"B-EVENT",
"I-EVENT",
"B-GROUP",
"I-GROUP",
"B-TITLE",
"I-TITLE",
"B-TIME",
"I-TIME",
"B-OTHER",
"I-OTHER",
],
},
label_column="ner",
description="Spanish-English named entity recognition dataset (Latin script)",
),
LinceConfig(
name="ner_msaea",
data_dir="ner_msaea",
colnames={"words": 0, "ner": 1},
classes={
"ner": [
"O",
"B-PER",
"I-PER",
"B-LOC",
"I-LOC",
"B-ORG",
"I-ORG",
"B-PROD",
"I-PROD",
"B-EVENT",
"I-EVENT",
"B-GROUP",
"I-GROUP",
"B-TITLE",
"I-TITLE",
"B-TIME",
"I-TIME",
"B-OTHER",
"I-OTHER",
],
},
label_column="ner",
description="Modern Standard Arabic-Egyptian Arabic named entity recognition dataset (Persian script)",
),
LinceConfig(
name="ner_hineng",
data_dir="ner_hineng",
colnames={"words": 0, "lid": 1, "ner": 2},
classes={
"lid": ["en", "hi", "rest"],
"ner": ["O", "B-PERSON", "I-PERSON", "B-ORGANISATION", "I-ORGANISATION", "B-PLACE", "I-PLACE"],
},
label_column="ner",
description="Hindi-English named entity recognition dataset (Latin script)",
),
# ==========================================================================================
# Sentiment Analysis (SA) datasets
LinceConfig(
name="sa_spaeng",
data_dir="sa_spaeng",
colnames={"words": 0, "lid": 1, "sa": 2},
classes={
"lid": ["lang1", "lang2", "ne", "fw", "ambiguous", "mixed", "other", "unk"],
"sa": ["positive", "neutral", "negative"],
},
label_column="sa",
description="Spanish-English sentiment analysis dataset (Latin script)",
),
]
def _info(self):
features = {"idx": datasets.Value("int32"), "words": datasets.Sequence(datasets.Value("string"))}
if self.config.name != "ner_msaea":
features["lid"] = datasets.Sequence(
datasets.Value("string")
) # excluding 'ner_msaea', all datasets have 'lid'
if self.config.name.startswith("pos_"):
features["pos"] = datasets.Sequence(datasets.Value("string"))
elif self.config.name.startswith("ner_"):
features["ner"] = datasets.Sequence(datasets.Value("string"))
elif self.config.name.startswith("sa_"):
features["sa"] = datasets.Value("string")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(features),
supervised_keys=None,
homepage="http://ritual.uh.edu/lince",
citation=_DATASET_CITATIONS.get(self.config.name, "") + "\n" + _CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
lince_dir = dl_manager.download_and_extract(f"{_LINCE_URL}/{self.config.name}.zip")
data_dir = os.path.join(lince_dir, self.config.data_dir)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, "train.conll"),
"colnames": self.config.colnames,
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(data_dir, "dev.conll"),
"colnames": self.config.colnames,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, "test.conll"),
"colnames": {
key: self.config.colnames[key]
for key in self.config.colnames.keys()
if key != self.config.label_column
},
},
),
]
def _generate_examples(self, filepath, colnames, delimiter="\t", metaregex=r"^# sent_enum = [0-9]+$"):
def is_empty_line(token_pack):
return all(field.strip() == "" for field in token_pack)
index = 0
for is_empty, pack in groupby(
csv.reader(open(filepath), delimiter=delimiter, quoting=csv.QUOTE_NONE), is_empty_line
):
if is_empty is False:
# packed sentence -> [['tok_1', 'lid_1', 'ner_1'], ..., ['tok_n', 'lid_n', 'ner_n']]
pack = list(pack)
meta = []
if re.match(metaregex, pack[0][0]): # for sentence-level annotations (or meta)
meta = pack[0][1:] # keep the sentence-level labels
pack = pack[1:] # ignore meta fields to unzip
unpacked = list(zip(*pack))
if meta:
unpacked = unpacked + meta
row = {feature: unpacked[colnames[feature]] for feature in colnames}
row["idx"] = index
index += 1
# dummy labels for the test set
if self.config.label_column not in row:
if self.config.label_column == "sa":
row[self.config.label_column] = ""
else:
row[self.config.label_column] = [""] * len(row["words"])
yield index, row