|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Machine translation EN-AZ dataset based on Google Translate and National Library of Azerbaijan.""" |
|
|
|
|
|
import os |
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{ |
|
huggingface:dataset, |
|
title={Machine translation EN-AZ dataset}, |
|
author={Learning Machine LLC}, |
|
year={2022} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Machine translation EN-AZ dataset based on Google Translate and National Library of Azerbaijan. |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/learningmachineaz/translate_enaz_10m" |
|
|
|
_LICENSE = "Apache" |
|
|
|
_URL = "https://learningmachine.az/datasets/translate_enaz_10m.zip" |
|
|
|
|
|
class TranslateEnaz10m(datasets.GeneratorBasedBuilder): |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"translation": datasets.Value("string"), |
|
"source_text": datasets.Value("string"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_dir = dl_manager.download_and_extract(_URL) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"file_path": os.path.join(data_dir, "dataset_enaz_10m.tsv") |
|
} |
|
) |
|
] |
|
|
|
def _generate_examples(self, file_path): |
|
with open(file_path, "r", encoding="utf-8") as f: |
|
for id_, row in enumerate(f): |
|
row = row.split("\t") |
|
yield id_, { |
|
"translation": row[0].strip(), |
|
"source_text": row[1].strip(), |
|
} |