adding data files
Browse files- .gitattributes +2 -0
- large-sinhala-asr-dataset.py +159 -0
- test.tsv +3 -0
- train.tsv +3 -0
.gitattributes
CHANGED
@@ -14,3 +14,5 @@
|
|
14 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
15 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
16 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
14 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
15 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
16 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.tsv* filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*tsv* filter=lfs diff=lfs merge=lfs -text
|
large-sinhala-asr-dataset.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import datasets
|
4 |
+
from datasets.tasks import AutomaticSpeechRecognition
|
5 |
+
|
6 |
+
|
7 |
+
_DATA_URL = ".tar.gz"
|
8 |
+
|
9 |
+
_CITATION = """\
|
10 |
+
@inproceedings{kjartansson-etal-sltu2018,
|
11 |
+
title = {{Crowd-Sourced Speech Corpora for Javanese, Sundanese, Sinhala, Nepali, and Bangladeshi Bengali}},
|
12 |
+
author = {Oddur Kjartansson and Supheakmungkol Sarin and Knot Pipatsrisawat and Martin Jansche and Linne Ha},
|
13 |
+
booktitle = {Proc. The 6th Intl. Workshop on Spoken Language Technologies for Under-Resourced Languages (SLTU)},
|
14 |
+
year = {2018},
|
15 |
+
address = {Gurugram, India},
|
16 |
+
month = aug,
|
17 |
+
pages = {52--55},
|
18 |
+
URL = {http://dx.doi.org/10.21437/SLTU.2018-11}
|
19 |
+
}
|
20 |
+
"""
|
21 |
+
|
22 |
+
_DESCRIPTION = """\
|
23 |
+
This data set contains transcribed audio data for Sinhala. The data set consists of wave files, and a TSV file. The file utt_spk_text.tsv contains a FileID, anonymized UserID and the transcription of audio in the file.
|
24 |
+
The data set has been manually quality checked, but there might still be errors.
|
25 |
+
|
26 |
+
See LICENSE.txt file for license information.
|
27 |
+
|
28 |
+
Copyright 2016, 2017, 2018 Google, Inc.
|
29 |
+
"""
|
30 |
+
|
31 |
+
_HOMEPAGE = "https://www.openslr.org/52/"
|
32 |
+
|
33 |
+
_LICENSE = "https://www.openslr.org/resources/52/LICENSE"
|
34 |
+
|
35 |
+
_LANGUAGES = {
|
36 |
+
"si": {
|
37 |
+
"Language": "Sinhala",
|
38 |
+
"Date": "2020-12-11",
|
39 |
+
"Size": "39 MB",
|
40 |
+
"Version": "si_1h_2020-12-11",
|
41 |
+
"Validated_Hr_Total": 0.05,
|
42 |
+
"Overall_Hr_Total": 1,
|
43 |
+
"Number_Of_Voice": 14,
|
44 |
+
},
|
45 |
+
}
|
46 |
+
|
47 |
+
|
48 |
+
class LargeASRConfig(datasets.BuilderConfig):
|
49 |
+
"""BuilderConfig for LargeASR."""
|
50 |
+
|
51 |
+
def __init__(self, name, sub_version, **kwargs):
|
52 |
+
"""
|
53 |
+
Args:
|
54 |
+
data_dir: `string`, the path to the folder containing the files in the
|
55 |
+
downloaded .tar
|
56 |
+
citation: `string`, citation for the data set
|
57 |
+
url: `string`, url for information about the data set
|
58 |
+
**kwargs: keyword arguments forwarded to super.
|
59 |
+
"""
|
60 |
+
self.sub_version = sub_version
|
61 |
+
self.language = kwargs.pop("language", None)
|
62 |
+
self.date_of_snapshot = kwargs.pop("date", None)
|
63 |
+
self.size = kwargs.pop("size", None)
|
64 |
+
self.validated_hr_total = kwargs.pop("val_hrs", None)
|
65 |
+
self.total_hr_total = kwargs.pop("total_hrs", None)
|
66 |
+
self.num_of_voice = kwargs.pop("num_of_voice", None)
|
67 |
+
description = f"Large Sinhala dataset in {self.language} version {self.sub_version} of {self.date_of_snapshot}. The dataset comprises {self.validated_hr_total} of validated transcribed speech data from {self.num_of_voice} speakers. The dataset has a size of {self.size}"
|
68 |
+
super(LargeASRConfig, self).__init__(
|
69 |
+
name=name, version=datasets.Version("1.0.0", ""), description=description, **kwargs
|
70 |
+
)
|
71 |
+
|
72 |
+
|
73 |
+
class LargeASR(datasets.GeneratorBasedBuilder):
|
74 |
+
|
75 |
+
BUILDER_CONFIGS = [
|
76 |
+
LargeASRConfig(
|
77 |
+
name=lang_id,
|
78 |
+
language=_LANGUAGES[lang_id]["Language"],
|
79 |
+
sub_version=_LANGUAGES[lang_id]["Version"],
|
80 |
+
date=_LANGUAGES[lang_id]["Date"],
|
81 |
+
size=_LANGUAGES[lang_id]["Size"],
|
82 |
+
val_hrs=_LANGUAGES[lang_id]["Validated_Hr_Total"],
|
83 |
+
total_hrs=_LANGUAGES[lang_id]["Overall_Hr_Total"],
|
84 |
+
num_of_voice=_LANGUAGES[lang_id]["Number_Of_Voice"],
|
85 |
+
)
|
86 |
+
for lang_id in _LANGUAGES.keys()
|
87 |
+
]
|
88 |
+
|
89 |
+
def _info(self):
|
90 |
+
features = datasets.Features(
|
91 |
+
{
|
92 |
+
"filename": datasets.Value("string"),
|
93 |
+
"x": datasets.Value("string"),
|
94 |
+
"sentence": datasets.Value("string"),
|
95 |
+
"full": datasets.Value("string"),
|
96 |
+
"file": datasets.Value("string"),
|
97 |
+
}
|
98 |
+
)
|
99 |
+
|
100 |
+
return datasets.DatasetInfo(
|
101 |
+
description=_DESCRIPTION,
|
102 |
+
features=features,
|
103 |
+
supervised_keys=None,
|
104 |
+
homepage=_HOMEPAGE,
|
105 |
+
license=_LICENSE,
|
106 |
+
citation=_CITATION,
|
107 |
+
task_templates=[
|
108 |
+
AutomaticSpeechRecognition(audio_file_path_column="file", transcription_column="sentence")
|
109 |
+
],
|
110 |
+
)
|
111 |
+
|
112 |
+
def _split_generators(self, dl_manager):
|
113 |
+
"""Returns SplitGenerators."""
|
114 |
+
# dl_path = dl_manager.download_and_extract(_DATA_URL)
|
115 |
+
# abs_path_to_data = os.path.join(dl_path, "cv-corpus-6.1-2020-12-11", self.config.name)
|
116 |
+
# abs_path_to_clips = os.path.join(abs_path_to_data, "clips")
|
117 |
+
|
118 |
+
return [
|
119 |
+
datasets.SplitGenerator(
|
120 |
+
name=datasets.Split.TRAIN,
|
121 |
+
gen_kwargs={
|
122 |
+
"filepath": os.path.join(abs_path_to_data, "train.tsv"),
|
123 |
+
"path_to_clips": abs_path_to_clips,
|
124 |
+
},
|
125 |
+
),
|
126 |
+
datasets.SplitGenerator(
|
127 |
+
name=datasets.Split.TEST,
|
128 |
+
gen_kwargs={
|
129 |
+
"filepath": os.path.join(abs_path_to_data, "test.tsv"),
|
130 |
+
"path_to_clips": abs_path_to_clips,
|
131 |
+
},
|
132 |
+
),
|
133 |
+
]
|
134 |
+
|
135 |
+
def _generate_examples(self, filepath, path_to_clips):
|
136 |
+
"""Yields examples."""
|
137 |
+
data_fields = list(self._info().features.keys())
|
138 |
+
path_idx = data_fields.index("file")
|
139 |
+
|
140 |
+
with open(filepath, encoding="utf-8") as f:
|
141 |
+
lines = f.readlines()
|
142 |
+
headline = lines[0]
|
143 |
+
|
144 |
+
column_names = headline.strip().split("\t")
|
145 |
+
assert (
|
146 |
+
column_names == data_fields
|
147 |
+
), f"The file should have {data_fields} as column names, but has {column_names}"
|
148 |
+
|
149 |
+
for id_, line in enumerate(lines[1:]):
|
150 |
+
field_values = line.strip().split("\t")
|
151 |
+
|
152 |
+
# set absolute path for wav audio file
|
153 |
+
field_values[path_idx] = os.path.join(path_to_clips, field_values[path_idx])
|
154 |
+
|
155 |
+
# if data is incomplete, fill with empty values
|
156 |
+
if len(field_values) < len(data_fields):
|
157 |
+
field_values += (len(data_fields) - len(field_values)) * ["''"]
|
158 |
+
|
159 |
+
yield id_, {key: value for key, value in zip(data_fields, field_values)}
|
test.tsv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f128900942286c77805da55efd4c6bdda0948146ead46b0c40f506ea4ac8c89
|
3 |
+
size 3256626
|
train.tsv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f128900942286c77805da55efd4c6bdda0948146ead46b0c40f506ea4ac8c89
|
3 |
+
size 3256626
|