albertvillanova HF staff commited on
Commit
f08c1ce
1 Parent(s): 5125969

Convert dataset to Parquet

Browse files

Convert dataset to Parquet.

README.md CHANGED
@@ -19,8 +19,8 @@ task_categories:
19
  - fill-mask
20
  task_ids:
21
  - dialogue-modeling
22
- pretty_name: Campsite Negotiation Dialogues
23
  paperswithcode_id: casino
 
24
  dataset_info:
25
  features:
26
  - name: chat_logs
@@ -160,10 +160,15 @@ dataset_info:
160
  list: string
161
  splits:
162
  - name: train
163
- num_bytes: 3211555
164
  num_examples: 1030
165
- download_size: 4300019
166
- dataset_size: 3211555
 
 
 
 
 
167
  ---
168
 
169
 
 
19
  - fill-mask
20
  task_ids:
21
  - dialogue-modeling
 
22
  paperswithcode_id: casino
23
+ pretty_name: Campsite Negotiation Dialogues
24
  dataset_info:
25
  features:
26
  - name: chat_logs
 
160
  list: string
161
  splits:
162
  - name: train
163
+ num_bytes: 3211407
164
  num_examples: 1030
165
+ download_size: 1247368
166
+ dataset_size: 3211407
167
+ configs:
168
+ - config_name: default
169
+ data_files:
170
+ - split: train
171
+ path: data/train-*
172
  ---
173
 
174
 
data/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1fb8a0da5097d2b6564090021d9d72bd43c214e95a872f4abf9626730067fd72
3
+ size 1247368
dataset_infos.json CHANGED
@@ -1 +1,266 @@
1
- {"default": {"description": "We provide a novel dataset (referred to as CaSiNo) of 1030 negotiation dialogues. Two participants take the role of campsite neighbors and negotiate for Food, Water, and Firewood packages, based on their individual preferences and requirements. This design keeps the task tractable, while still facilitating linguistically rich and personal conversations. This helps to overcome the limitations of prior negotiation datasets such as Deal or No Deal and Craigslist Bargain. Each dialogue consists of rich meta-data including participant demographics, personality, and their subjective evaluation of the negotiation in terms of satisfaction and opponent likeness.\n", "citation": "@inproceedings{chawla2021casino,\n title={CaSiNo: A Corpus of Campsite Negotiation Dialogues for Automatic Negotiation Systems},\n author={Chawla, Kushal and Ramirez, Jaysa and Clever, Rene and Lucas, Gale and May, Jonathan and Gratch, Jonathan},\n booktitle={Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies},\n pages={3167--3185},\n year={2021}\n}\n", "homepage": "https://github.com/kushalchawla/CaSiNo", "license": "The project is licensed under CC-BY-4.0", "features": {"chat_logs": [{"text": {"dtype": "string", "id": null, "_type": "Value"}, "task_data": {"data": {"dtype": "string", "id": null, "_type": "Value"}, "issue2youget": {"Firewood": {"dtype": "string", "id": null, "_type": "Value"}, "Water": {"dtype": "string", "id": null, "_type": "Value"}, "Food": {"dtype": "string", "id": null, "_type": "Value"}}, "issue2theyget": {"Firewood": {"dtype": "string", "id": null, "_type": "Value"}, "Water": {"dtype": "string", "id": null, "_type": "Value"}, "Food": {"dtype": "string", "id": null, "_type": "Value"}}}, "id": {"dtype": "string", "id": null, "_type": "Value"}}], "participant_info": {"mturk_agent_1": {"value2issue": {"Low": {"dtype": "string", "id": null, "_type": "Value"}, "Medium": {"dtype": "string", "id": null, "_type": "Value"}, "High": {"dtype": "string", "id": null, "_type": "Value"}}, "value2reason": {"Low": {"dtype": "string", "id": null, "_type": "Value"}, "Medium": {"dtype": "string", "id": null, "_type": "Value"}, "High": {"dtype": "string", "id": null, "_type": "Value"}}, "outcomes": {"points_scored": {"dtype": "int32", "id": null, "_type": "Value"}, "satisfaction": {"dtype": "string", "id": null, "_type": "Value"}, "opponent_likeness": {"dtype": "string", "id": null, "_type": "Value"}}, "demographics": {"age": {"dtype": "int32", "id": null, "_type": "Value"}, "gender": {"dtype": "string", "id": null, "_type": "Value"}, "ethnicity": {"dtype": "string", "id": null, "_type": "Value"}, "education": {"dtype": "string", "id": null, "_type": "Value"}}, "personality": {"svo": {"dtype": "string", "id": null, "_type": "Value"}, "big-five": {"extraversion": {"dtype": "float32", "id": null, "_type": "Value"}, "agreeableness": {"dtype": "float32", "id": null, "_type": "Value"}, "conscientiousness": {"dtype": "float32", "id": null, "_type": "Value"}, "emotional-stability": {"dtype": "float32", "id": null, "_type": "Value"}, "openness-to-experiences": {"dtype": "float32", "id": null, "_type": "Value"}}}}, "mturk_agent_2": {"value2issue": {"Low": {"dtype": "string", "id": null, "_type": "Value"}, "Medium": {"dtype": "string", "id": null, "_type": "Value"}, "High": {"dtype": "string", "id": null, "_type": "Value"}}, "value2reason": {"Low": {"dtype": "string", "id": null, "_type": "Value"}, "Medium": {"dtype": "string", "id": null, "_type": "Value"}, "High": {"dtype": "string", "id": null, "_type": "Value"}}, "outcomes": {"points_scored": {"dtype": "int32", "id": null, "_type": "Value"}, "satisfaction": {"dtype": "string", "id": null, "_type": "Value"}, "opponent_likeness": {"dtype": "string", "id": null, "_type": "Value"}}, "demographics": {"age": {"dtype": "int32", "id": null, "_type": "Value"}, "gender": {"dtype": "string", "id": null, "_type": "Value"}, "ethnicity": {"dtype": "string", "id": null, "_type": "Value"}, "education": {"dtype": "string", "id": null, "_type": "Value"}}, "personality": {"svo": {"dtype": "string", "id": null, "_type": "Value"}, "big-five": {"extraversion": {"dtype": "float32", "id": null, "_type": "Value"}, "agreeableness": {"dtype": "float32", "id": null, "_type": "Value"}, "conscientiousness": {"dtype": "float32", "id": null, "_type": "Value"}, "emotional-stability": {"dtype": "float32", "id": null, "_type": "Value"}, "openness-to-experiences": {"dtype": "float32", "id": null, "_type": "Value"}}}}}, "annotations": [[{"dtype": "string", "id": null, "_type": "Value"}]]}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "casino", "config_name": "default", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 3211555, "num_examples": 1030, "dataset_name": "casino"}}, "download_checksums": {"https://raw.githubusercontent.com/kushalchawla/CaSiNo/main/data/casino.json": {"num_bytes": 4300019, "checksum": "4f2c4560a0070906ed018c3f0766e35f8f8f31b36274ebf35b608621915744ab"}}, "download_size": 4300019, "post_processing_size": null, "dataset_size": 3211555, "size_in_bytes": 7511574}}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "default": {
3
+ "description": "We provide a novel dataset (referred to as CaSiNo) of 1030 negotiation dialogues. Two participants take the role of campsite neighbors and negotiate for Food, Water, and Firewood packages, based on their individual preferences and requirements. This design keeps the task tractable, while still facilitating linguistically rich and personal conversations. This helps to overcome the limitations of prior negotiation datasets such as Deal or No Deal and Craigslist Bargain. Each dialogue consists of rich meta-data including participant demographics, personality, and their subjective evaluation of the negotiation in terms of satisfaction and opponent likeness.\n",
4
+ "citation": "@inproceedings{chawla2021casino,\n title={CaSiNo: A Corpus of Campsite Negotiation Dialogues for Automatic Negotiation Systems},\n author={Chawla, Kushal and Ramirez, Jaysa and Clever, Rene and Lucas, Gale and May, Jonathan and Gratch, Jonathan},\n booktitle={Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies},\n pages={3167--3185},\n year={2021}\n}\n",
5
+ "homepage": "https://github.com/kushalchawla/CaSiNo",
6
+ "license": "The project is licensed under CC-BY-4.0",
7
+ "features": {
8
+ "chat_logs": [
9
+ {
10
+ "text": {
11
+ "dtype": "string",
12
+ "_type": "Value"
13
+ },
14
+ "task_data": {
15
+ "data": {
16
+ "dtype": "string",
17
+ "_type": "Value"
18
+ },
19
+ "issue2youget": {
20
+ "Firewood": {
21
+ "dtype": "string",
22
+ "_type": "Value"
23
+ },
24
+ "Water": {
25
+ "dtype": "string",
26
+ "_type": "Value"
27
+ },
28
+ "Food": {
29
+ "dtype": "string",
30
+ "_type": "Value"
31
+ }
32
+ },
33
+ "issue2theyget": {
34
+ "Firewood": {
35
+ "dtype": "string",
36
+ "_type": "Value"
37
+ },
38
+ "Water": {
39
+ "dtype": "string",
40
+ "_type": "Value"
41
+ },
42
+ "Food": {
43
+ "dtype": "string",
44
+ "_type": "Value"
45
+ }
46
+ }
47
+ },
48
+ "id": {
49
+ "dtype": "string",
50
+ "_type": "Value"
51
+ }
52
+ }
53
+ ],
54
+ "participant_info": {
55
+ "mturk_agent_1": {
56
+ "value2issue": {
57
+ "Low": {
58
+ "dtype": "string",
59
+ "_type": "Value"
60
+ },
61
+ "Medium": {
62
+ "dtype": "string",
63
+ "_type": "Value"
64
+ },
65
+ "High": {
66
+ "dtype": "string",
67
+ "_type": "Value"
68
+ }
69
+ },
70
+ "value2reason": {
71
+ "Low": {
72
+ "dtype": "string",
73
+ "_type": "Value"
74
+ },
75
+ "Medium": {
76
+ "dtype": "string",
77
+ "_type": "Value"
78
+ },
79
+ "High": {
80
+ "dtype": "string",
81
+ "_type": "Value"
82
+ }
83
+ },
84
+ "outcomes": {
85
+ "points_scored": {
86
+ "dtype": "int32",
87
+ "_type": "Value"
88
+ },
89
+ "satisfaction": {
90
+ "dtype": "string",
91
+ "_type": "Value"
92
+ },
93
+ "opponent_likeness": {
94
+ "dtype": "string",
95
+ "_type": "Value"
96
+ }
97
+ },
98
+ "demographics": {
99
+ "age": {
100
+ "dtype": "int32",
101
+ "_type": "Value"
102
+ },
103
+ "gender": {
104
+ "dtype": "string",
105
+ "_type": "Value"
106
+ },
107
+ "ethnicity": {
108
+ "dtype": "string",
109
+ "_type": "Value"
110
+ },
111
+ "education": {
112
+ "dtype": "string",
113
+ "_type": "Value"
114
+ }
115
+ },
116
+ "personality": {
117
+ "svo": {
118
+ "dtype": "string",
119
+ "_type": "Value"
120
+ },
121
+ "big-five": {
122
+ "extraversion": {
123
+ "dtype": "float32",
124
+ "_type": "Value"
125
+ },
126
+ "agreeableness": {
127
+ "dtype": "float32",
128
+ "_type": "Value"
129
+ },
130
+ "conscientiousness": {
131
+ "dtype": "float32",
132
+ "_type": "Value"
133
+ },
134
+ "emotional-stability": {
135
+ "dtype": "float32",
136
+ "_type": "Value"
137
+ },
138
+ "openness-to-experiences": {
139
+ "dtype": "float32",
140
+ "_type": "Value"
141
+ }
142
+ }
143
+ }
144
+ },
145
+ "mturk_agent_2": {
146
+ "value2issue": {
147
+ "Low": {
148
+ "dtype": "string",
149
+ "_type": "Value"
150
+ },
151
+ "Medium": {
152
+ "dtype": "string",
153
+ "_type": "Value"
154
+ },
155
+ "High": {
156
+ "dtype": "string",
157
+ "_type": "Value"
158
+ }
159
+ },
160
+ "value2reason": {
161
+ "Low": {
162
+ "dtype": "string",
163
+ "_type": "Value"
164
+ },
165
+ "Medium": {
166
+ "dtype": "string",
167
+ "_type": "Value"
168
+ },
169
+ "High": {
170
+ "dtype": "string",
171
+ "_type": "Value"
172
+ }
173
+ },
174
+ "outcomes": {
175
+ "points_scored": {
176
+ "dtype": "int32",
177
+ "_type": "Value"
178
+ },
179
+ "satisfaction": {
180
+ "dtype": "string",
181
+ "_type": "Value"
182
+ },
183
+ "opponent_likeness": {
184
+ "dtype": "string",
185
+ "_type": "Value"
186
+ }
187
+ },
188
+ "demographics": {
189
+ "age": {
190
+ "dtype": "int32",
191
+ "_type": "Value"
192
+ },
193
+ "gender": {
194
+ "dtype": "string",
195
+ "_type": "Value"
196
+ },
197
+ "ethnicity": {
198
+ "dtype": "string",
199
+ "_type": "Value"
200
+ },
201
+ "education": {
202
+ "dtype": "string",
203
+ "_type": "Value"
204
+ }
205
+ },
206
+ "personality": {
207
+ "svo": {
208
+ "dtype": "string",
209
+ "_type": "Value"
210
+ },
211
+ "big-five": {
212
+ "extraversion": {
213
+ "dtype": "float32",
214
+ "_type": "Value"
215
+ },
216
+ "agreeableness": {
217
+ "dtype": "float32",
218
+ "_type": "Value"
219
+ },
220
+ "conscientiousness": {
221
+ "dtype": "float32",
222
+ "_type": "Value"
223
+ },
224
+ "emotional-stability": {
225
+ "dtype": "float32",
226
+ "_type": "Value"
227
+ },
228
+ "openness-to-experiences": {
229
+ "dtype": "float32",
230
+ "_type": "Value"
231
+ }
232
+ }
233
+ }
234
+ }
235
+ },
236
+ "annotations": [
237
+ [
238
+ {
239
+ "dtype": "string",
240
+ "_type": "Value"
241
+ }
242
+ ]
243
+ ]
244
+ },
245
+ "builder_name": "parquet",
246
+ "dataset_name": "casino",
247
+ "config_name": "default",
248
+ "version": {
249
+ "version_str": "1.1.0",
250
+ "major": 1,
251
+ "minor": 1,
252
+ "patch": 0
253
+ },
254
+ "splits": {
255
+ "train": {
256
+ "name": "train",
257
+ "num_bytes": 3211407,
258
+ "num_examples": 1030,
259
+ "dataset_name": null
260
+ }
261
+ },
262
+ "download_size": 1247368,
263
+ "dataset_size": 3211407,
264
+ "size_in_bytes": 4458775
265
+ }
266
+ }