File size: 12,005 Bytes
9cc1fd0
 
 
 
 
c9ee51c
9cc1fd0
c9ee51c
ee84610
9cc1fd0
 
 
 
 
 
 
d0cd265
 
 
9cc1fd0
 
 
290898d
5125969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
290898d
5125969
290898d
 
 
 
 
 
 
9cc1fd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
---
annotations_creators:
- expert-generated
language_creators:
- crowdsourced
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- conversational
- text-generation
- fill-mask
task_ids:
- dialogue-modeling
paperswithcode_id: casino
pretty_name: Campsite Negotiation Dialogues
dataset_info:
  features:
  - name: chat_logs
    list:
    - name: text
      dtype: string
    - name: task_data
      struct:
      - name: data
        dtype: string
      - name: issue2youget
        struct:
        - name: Firewood
          dtype: string
        - name: Water
          dtype: string
        - name: Food
          dtype: string
      - name: issue2theyget
        struct:
        - name: Firewood
          dtype: string
        - name: Water
          dtype: string
        - name: Food
          dtype: string
    - name: id
      dtype: string
  - name: participant_info
    struct:
    - name: mturk_agent_1
      struct:
      - name: value2issue
        struct:
        - name: Low
          dtype: string
        - name: Medium
          dtype: string
        - name: High
          dtype: string
      - name: value2reason
        struct:
        - name: Low
          dtype: string
        - name: Medium
          dtype: string
        - name: High
          dtype: string
      - name: outcomes
        struct:
        - name: points_scored
          dtype: int32
        - name: satisfaction
          dtype: string
        - name: opponent_likeness
          dtype: string
      - name: demographics
        struct:
        - name: age
          dtype: int32
        - name: gender
          dtype: string
        - name: ethnicity
          dtype: string
        - name: education
          dtype: string
      - name: personality
        struct:
        - name: svo
          dtype: string
        - name: big-five
          struct:
          - name: extraversion
            dtype: float32
          - name: agreeableness
            dtype: float32
          - name: conscientiousness
            dtype: float32
          - name: emotional-stability
            dtype: float32
          - name: openness-to-experiences
            dtype: float32
    - name: mturk_agent_2
      struct:
      - name: value2issue
        struct:
        - name: Low
          dtype: string
        - name: Medium
          dtype: string
        - name: High
          dtype: string
      - name: value2reason
        struct:
        - name: Low
          dtype: string
        - name: Medium
          dtype: string
        - name: High
          dtype: string
      - name: outcomes
        struct:
        - name: points_scored
          dtype: int32
        - name: satisfaction
          dtype: string
        - name: opponent_likeness
          dtype: string
      - name: demographics
        struct:
        - name: age
          dtype: int32
        - name: gender
          dtype: string
        - name: ethnicity
          dtype: string
        - name: education
          dtype: string
      - name: personality
        struct:
        - name: svo
          dtype: string
        - name: big-five
          struct:
          - name: extraversion
            dtype: float32
          - name: agreeableness
            dtype: float32
          - name: conscientiousness
            dtype: float32
          - name: emotional-stability
            dtype: float32
          - name: openness-to-experiences
            dtype: float32
  - name: annotations
    list:
      list: string
  splits:
  - name: train
    num_bytes: 3211407
    num_examples: 1030
  download_size: 1247368
  dataset_size: 3211407
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
---


# Dataset Card for Casino

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Repository:** [Github: Kushal Chawla CaSiNo](https://github.com/kushalchawla/CaSiNo)
- **Paper:** [CaSiNo: A Corpus of Campsite Negotiation Dialogues for Automatic Negotiation Systems](https://aclanthology.org/2021.naacl-main.254.pdf)
- **Point of Contact:** [Kushal Chawla]([email protected])

### Dataset Summary

We provide a novel dataset (referred to as CaSiNo) of 1030 negotiation dialogues. Two participants take the role of campsite neighbors and negotiate for Food, Water, and Firewood packages, based on their individual preferences and requirements. This design keeps the task tractable, while still facilitating linguistically rich and personal conversations. This helps to overcome the limitations of prior negotiation datasets such as Deal or No Deal and Craigslist Bargain. Each dialogue consists of rich meta-data including participant demographics, personality, and their subjective evaluation of the negotiation in terms of satisfaction and opponent likeness.

### Supported Tasks and Leaderboards

Train end-to-end models for negotiation

### Languages

English

## Dataset Structure

### Data Instances

```
{
    "chat_logs": [
        {
            "text": "Hello! \ud83d\ude42 Let's work together on a deal for these packages, shall we? What are you most interested in?",
            "task_data": {}, 
            "id": "mturk_agent_1"
        },
        ...
    ],
    "participant_info": {
        "mturk_agent_1":
            {
                "value2issue": ...
                "value2reason": ...
                "outcomes": ...
                "demographics": ...
                "personality": ...
            }, 
        "mturk_agent_2": ...
    },
    "annotations": [
        ["Hello! \ud83d\ude42 Let's work together on a deal for these packages, shall we? What are you most interested in?", "promote-coordination,elicit-pref"],
        ...
    ]
}
```

### Data Fields

- `chat_logs`: The negotiation dialogue between two participants
  - `text`: The dialogue utterance
  - `task_data`: Meta-data associated with the utterance such as the deal submitted by a participant
  - `id`: The ID of the participant who typed this utterance
- `participant_info`: Meta-data about the two participants in this conversation
  - `mturk_agent_1`: For the first participant (Note that 'first' is just for reference. There is no order between the participants and any participant can start the conversation)
      - `value2issue`: The priority order of this participant among Food, Water, Firewood
      - `value2reason`: The personal arguments given by the participants themselves, consistent with the above preference order. This preference order and these arguments were submitted before the negotiation began. 
      - `outcomes`: The negotiation outcomes for this participant including objective and subjective assessment.
      - `demographics`: Demographic attributes of the participant in terms of age, gender, ethnicity, and education.
      - `personality`: Personality attributes for this participant, in terms of Big-5 and Social Value Orientation
  - `mturk_agent_2`: For the second participant; follows the same structure as above
- `annotations`: Strategy annotations for each utterance in the dialogue, wherever available. The first element represents the utterance and the second represents a comma-separated list of all strategies present in that utterance.

### Data Splits

No default data split has been provided. Hence, all 1030 data points are under the 'train' split.

|                     | Train |
|       -----         | ----- |
| total dialogues     |  1030 |
| annotated dialogues |   396 |

## Dataset Creation

### Curation Rationale

The dataset was collected to address the limitations in prior negotiation datasets from the perspective of downstream applications in pedagogy and conversational AI. Please refer to the original paper published at NAACL 2021 for details about the rationale and data curation steps ([source paper](https://aclanthology.org/2021.naacl-main.254.pdf)).

### Source Data

#### Initial Data Collection and Normalization

The dialogues were crowdsourced on Amazon Mechanical Turk. The strategy annotations were performed by expert annotators (first three authors of the paper). Please refer to the original dataset paper published at NAACL 2021 for more details ([source paper](https://aclanthology.org/2021.naacl-main.254.pdf)).

#### Who are the source language producers?

The primary producers are Turkers on Amazon Mechanical Turk platform. Two turkers were randomly paired with each other to engage in a negotiation via a chat interface. Please refer to the original dataset paper published at NAACL 2021 for more details ([source paper](https://aclanthology.org/2021.naacl-main.254.pdf)).

### Annotations

#### Annotation process

From the [source paper](https://aclanthology.org/2021.naacl-main.254.pdf) for this dataset: 

>Three expert annotators independently annotated 396 dialogues containing 4615 utterances. The annotation guidelines were iterated over a subset of 5 dialogues, while the reliability scores were computed on a different subset of 10 dialogues. We use the nominal form of Krippendorff’s alpha (Krippendorff, 2018) to measure the inter-annotator agreement. We provide the annotation statistics in Table 2. Although we release all the annotations, we skip Coordination and Empathy for our analysis in this work, due to higher subjectivity resulting in relatively lower reliability scores.

#### Who are the annotators?

Three expert annotators (first three authors of the paper).

### Personal and Sensitive Information

All personally identifiable information about the participants such as MTurk Ids or HIT Ids was removed before releasing the data.

## Considerations for Using the Data

### Social Impact of Dataset

Please refer to Section 8.2 in the [source paper](https://aclanthology.org/2021.naacl-main.254.pdf).

### Discussion of Biases

Please refer to Section 8.2 in the [source paper](https://aclanthology.org/2021.naacl-main.254.pdf).

### Other Known Limitations

Please refer to Section 7 in the [source paper](https://aclanthology.org/2021.naacl-main.254.pdf).

## Additional Information

### Dataset Curators

Corresponding Author: Kushal Chawla (`[email protected]`)\
Affiliation: University of Southern California\
Please refer to the [source paper](https://aclanthology.org/2021.naacl-main.254.pdf) for the complete author list.

### Licensing Information

The project is licensed under CC-by-4.0

### Citation Information
```
@inproceedings{chawla2021casino,
  title={CaSiNo: A Corpus of Campsite Negotiation Dialogues for Automatic Negotiation Systems},
  author={Chawla, Kushal and Ramirez, Jaysa and Clever, Rene and Lucas, Gale and May, Jonathan and Gratch, Jonathan},
  booktitle={Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies},
  pages={3167--3185},
  year={2021}
}
```

### Contributions

Thanks to [Kushal Chawla](https://kushalchawla.github.io/) for adding this dataset.