# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """LegalGLUE: A Benchmark Dataset for Legal NLP models.""" import csv import json import textwrap import os import datasets _DESCRIPTION = """\ Legal General Language Understanding Evaluation (LegalGLUE) benchmark is a collection of datasets for evaluating model performance across a diverse set of legal NLP tasks """ GERMAN_LER = [ "B-AN", "B-EUN", "B-GRT", "B-GS", "B-INN", "B-LD", "B-LDS", "B-LIT", "B-MRK", "B-ORG", "B-PER", "B-RR", "B-RS", "B-ST", "B-STR", "B-UN", "B-VO", "B-VS", "B-VT", "I-AN", "I-EUN", "I-GRT", "I-GS", "I-INN", "I-LD", "I-LDS", "I-LIT", "I-MRK", "I-ORG", "I-PER", "I-RR", "I-RS", "I-ST", "I-STR", "I-UN", "I-VO", "I-VS", "I-VT", "O"] class LegalGlueConfig(datasets.BuilderConfig): """BuilderConfig for LegalGLUE.""" def __init__( self, label_classes, #the list of classes of the labels multi_label, #boolean, if the task is multi-label homepage, #homepage of the original dataset citation, #citation for the dataset data_url, data_files, **kwargs, ): super(LegalGlueConfig, self).__init__(version=datasets.Version("1.1.0", ""), **kwargs) self.label_classes = label_classes self.multi_label = multi_label self.homepage = homepage self.citation = citation self.data_url = data_url self.data_files = data_files class LegalGLUE(datasets.GeneratorBasedBuilder): """LegalGLUE: A Benchmark Dataset for Legal Language Understanding""" BUILDER_CONFIGS = [ LegalGlueConfig( name="german_ler", description=textwrap.dedent( """\ description""" ), label_classes=GERMAN_LER, multi_label=False, data_url="https://raw.githubusercontent.com/elenanereiss/Legal-Entity-Recognition/master/data/dataset_courts.zip", data_files=["bag.conll", "bfh.conll", "bgh.conll", "bpatg.conll", "bsg.conll", "bverfg.conll", "bverwg.conll"], homepage="https://github.com/elenanereiss/Legal-Entity-Recognition", citation=textwrap.dedent("""\ @inproceedings{leitner2019fine, author = {Elena Leitner and Georg Rehm and Julian Moreno-Schneider}, title = {{Fine-grained Named Entity Recognition in Legal Documents}}, booktitle = {Semantic Systems. The Power of AI and Knowledge Graphs. Proceedings of the 15th International Conference (SEMANTiCS 2019)}, year = 2019, editor = {Maribel Acosta and Philippe Cudré-Mauroux and Maria Maleshkova and Tassilo Pellegrini and Harald Sack and York Sure-Vetter}, keywords = {aip}, publisher = {Springer}, series = {Lecture Notes in Computer Science}, number = {11702}, address = {Karlsruhe, Germany}, month = 9, note = {10/11 September 2019}, pages = {272--287}, pdf = {https://link.springer.com/content/pdf/10.1007%2F978-3-030-33220-4_20.pdf}} """) ) ] def _info(self): if self.config.name == "german_ler": features = { "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=self.config.label_classes ) ) } return datasets.DatasetInfo( description=self.config.description, features=datasets.Features(features), homepage=self.config.homepage, citation=self.config.citation, ) def _split_generators(self, dl_manager): #archive = dl_manager.download(self.config.data_url) if self.config_name == "german_ler": archive = dl_manager.download_and_extract(self.config.data_url) return datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": self.config.data_files, "split": "train", "archive": archive, }, ) else: return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": self.config.data_files, "split": "train", "files": dl_manager.iter_archive(archive), }, ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": self.config.data_files, "split": "test", "files": dl_manager.iter_archive(archive), }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": self.config.data_files, "split": "validation", "files": dl_manager.iter_archive(archive), }, ), ] def _generate_examples(self, filepath, split, archive): if self.config_name == "german_ler": texts, labels = [], [] for file in filepath: path = os.path.join(archive,file) with open (path, encoding="utf-8") as f: tokens = [] tags = [] for line in f: if line == "" or line == "\n": if tokens: texts.append(tokens) labels.append(tags) tokens = [] tags = [] else: token, tag = line.split() tokens.append(token) tags.append(tag.rstrip()) texts.append(tokens) labels.append(tags) for i in enumerate(texts): tokens = text[i] ner_tags = labels[i] yield i, { "id": str(i), "tokens": tokens, "ner_tags": ner_tags, }