Datasets:
ArXiv:
fixed for dataset_info generation
Browse files- dataset_infos.json +1 -0
- legalglue.py +16 -15
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"german_ler": {"description": "description", "citation": "@inproceedings{leitner2019fine,\nauthor = {Elena Leitner and Georg Rehm and Julian Moreno-Schneider},\ntitle = {{Fine-grained Named Entity Recognition in Legal Documents}},\nbooktitle = {Semantic Systems. The Power of AI and Knowledge\n Graphs. Proceedings of the 15th International Conference\n (SEMANTiCS 2019)},\nyear = 2019,\neditor = {Maribel Acosta and Philippe Cudr\u00e9-Mauroux and Maria\n Maleshkova and Tassilo Pellegrini and Harald Sack and York\n Sure-Vetter},\nkeywords = {aip},\npublisher = {Springer},\nseries = {Lecture Notes in Computer Science},\nnumber = {11702},\naddress = {Karlsruhe, Germany},\nmonth = 9,\nnote = {10/11 September 2019},\npages = {272--287},\npdf = {https://link.springer.com/content/pdf/10.1007%2F978-3-030-33220-4_20.pdf}}\n", "homepage": "https://github.com/elenanereiss/Legal-Entity-Recognition", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner_tags": {"feature": {"num_classes": 39, "names": ["B-AN", "B-EUN", "B-GRT", "B-GS", "B-INN", "B-LD", "B-LDS", "B-LIT", "B-MRK", "B-ORG", "B-PER", "B-RR", "B-RS", "B-ST", "B-STR", "B-UN", "B-VO", "B-VS", "B-VT", "I-AN", "I-EUN", "I-GRT", "I-GS", "I-INN", "I-LD", "I-LDS", "I-LIT", "I-MRK", "I-ORG", "I-PER", "I-RR", "I-RS", "I-ST", "I-STR", "I-UN", "I-VO", "I-VS", "I-VT", "O"], "names_file": null, "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "legal_glue", "config_name": "german_ler", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 38854047, "num_examples": 66730, "dataset_name": "legal_glue"}}, "download_checksums": {"https://raw.githubusercontent.com/elenanereiss/Legal-Entity-Recognition/master/data/dataset_courts.zip": {"num_bytes": 4392913, "checksum": "f0427df5fb8bfdefe5228bc0fa0e75e9cfa782d1a78e32582cce096473c88567"}}, "download_size": 4392913, "post_processing_size": null, "dataset_size": 38854047, "size_in_bytes": 43246960}}
|
legalglue.py
CHANGED
@@ -152,17 +152,17 @@ class LegalGLUE(datasets.GeneratorBasedBuilder):
|
|
152 |
|
153 |
def _split_generators(self, dl_manager):
|
154 |
#archive = dl_manager.download(self.config.data_url)
|
155 |
-
if self.
|
156 |
archive = dl_manager.download_and_extract(self.config.data_url)
|
157 |
-
return datasets.SplitGenerator(
|
158 |
name=datasets.Split.TRAIN,
|
159 |
# These kwargs will be passed to _generate_examples
|
160 |
gen_kwargs={
|
161 |
-
"filepath":
|
162 |
"split": "train",
|
163 |
-
|
164 |
},
|
165 |
-
)
|
166 |
# else:
|
167 |
# return [
|
168 |
# datasets.SplitGenerator(
|
@@ -194,11 +194,12 @@ class LegalGLUE(datasets.GeneratorBasedBuilder):
|
|
194 |
# ),
|
195 |
# ]
|
196 |
|
197 |
-
def _generate_examples(self, filepath, split):
|
198 |
-
if self.
|
199 |
texts, labels = [], []
|
200 |
-
for
|
201 |
-
|
|
|
202 |
tokens = []
|
203 |
tags = []
|
204 |
for line in f:
|
@@ -208,15 +209,15 @@ class LegalGLUE(datasets.GeneratorBasedBuilder):
|
|
208 |
labels.append(tags)
|
209 |
tokens = []
|
210 |
tags = []
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
texts.append(tokens)
|
216 |
labels.append(tags)
|
217 |
|
218 |
-
for i in enumerate(texts):
|
219 |
-
tokens =
|
220 |
ner_tags = labels[i]
|
221 |
yield i, {
|
222 |
"id": str(i),
|
|
|
152 |
|
153 |
def _split_generators(self, dl_manager):
|
154 |
#archive = dl_manager.download(self.config.data_url)
|
155 |
+
if self.config.name == "german_ler":
|
156 |
archive = dl_manager.download_and_extract(self.config.data_url)
|
157 |
+
return [datasets.SplitGenerator(
|
158 |
name=datasets.Split.TRAIN,
|
159 |
# These kwargs will be passed to _generate_examples
|
160 |
gen_kwargs={
|
161 |
+
"filepath": self.config.data_files,
|
162 |
"split": "train",
|
163 |
+
"files": [os.path.join(archive,file) for file in self.config.data_files]#dl_manager.iter_archive(archive),
|
164 |
},
|
165 |
+
)]
|
166 |
# else:
|
167 |
# return [
|
168 |
# datasets.SplitGenerator(
|
|
|
194 |
# ),
|
195 |
# ]
|
196 |
|
197 |
+
def _generate_examples(self, filepath, split, files):
|
198 |
+
if self.config.name == "german_ler":
|
199 |
texts, labels = [], []
|
200 |
+
for file in files:
|
201 |
+
#if path in filepath:
|
202 |
+
with open(file, encoding="utf-8") as f:
|
203 |
tokens = []
|
204 |
tags = []
|
205 |
for line in f:
|
|
|
209 |
labels.append(tags)
|
210 |
tokens = []
|
211 |
tags = []
|
212 |
+
else:
|
213 |
+
token, tag = line.split()
|
214 |
+
tokens.append(token)
|
215 |
+
tags.append(tag.rstrip())
|
216 |
texts.append(tokens)
|
217 |
labels.append(tags)
|
218 |
|
219 |
+
for i,token in enumerate(texts):
|
220 |
+
tokens = texts[i]
|
221 |
ner_tags = labels[i]
|
222 |
yield i, {
|
223 |
"id": str(i),
|