Datasets:
ArXiv:
Upload legalglue.py
Browse files- legalglue.py +219 -0
legalglue.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""LegalGLUE: A Benchmark Dataset for Legal NLP models."""
|
16 |
+
|
17 |
+
import csv
|
18 |
+
import json
|
19 |
+
import textwrap
|
20 |
+
|
21 |
+
import datasets
|
22 |
+
|
23 |
+
|
24 |
+
_DESCRIPTION = """\
|
25 |
+
Legal General Language Understanding Evaluation (LegalGLUE) benchmark is
|
26 |
+
a collection of datasets for evaluating model performance across a diverse set of legal NLP tasks
|
27 |
+
"""
|
28 |
+
|
29 |
+
GERMAN_LER = [
|
30 |
+
"B-AN",
|
31 |
+
"B-EUN",
|
32 |
+
"B-GRT",
|
33 |
+
"B-GS",
|
34 |
+
"B-INN",
|
35 |
+
"B-LD",
|
36 |
+
"B-LDS",
|
37 |
+
"B-LIT",
|
38 |
+
"B-MRK",
|
39 |
+
"B-ORG",
|
40 |
+
"B-PER",
|
41 |
+
"B-RR",
|
42 |
+
"B-RS",
|
43 |
+
"B-ST",
|
44 |
+
"B-STR",
|
45 |
+
"B-UN",
|
46 |
+
"B-VO",
|
47 |
+
"B-VS",
|
48 |
+
"B-VT",
|
49 |
+
"I-AN",
|
50 |
+
"I-EUN",
|
51 |
+
"I-GRT",
|
52 |
+
"I-GS",
|
53 |
+
"I-INN",
|
54 |
+
"I-LD",
|
55 |
+
"I-LDS",
|
56 |
+
"I-LIT",
|
57 |
+
"I-MRK",
|
58 |
+
"I-ORG",
|
59 |
+
"I-PER",
|
60 |
+
"I-RR",
|
61 |
+
"I-RS",
|
62 |
+
"I-ST",
|
63 |
+
"I-STR",
|
64 |
+
"I-UN",
|
65 |
+
"I-VO",
|
66 |
+
"I-VS",
|
67 |
+
"I-VT",
|
68 |
+
"O"]
|
69 |
+
|
70 |
+
|
71 |
+
class LegalGlueConfig(datasets.BuilderConfig):
|
72 |
+
"""BuilderConfig for LegalGLUE."""
|
73 |
+
|
74 |
+
def __init__(
|
75 |
+
self,
|
76 |
+
label_classes, #the list of classes of the labels
|
77 |
+
multi_label, #boolean, if the task is multi-label
|
78 |
+
homepage, #homepage of the original dataset
|
79 |
+
citation, #citation for the dataset
|
80 |
+
data_url,
|
81 |
+
data_files,
|
82 |
+
**kwargs,
|
83 |
+
):
|
84 |
+
super(LegalGlueConfig, self).__init__(version=datasets.Version("1.1.0", ""), **kwargs)
|
85 |
+
self.label_classes = label_classes
|
86 |
+
self.multi_label = multi_label
|
87 |
+
self.homepage = homepage
|
88 |
+
self.citation = citation
|
89 |
+
self.data_url = data_url
|
90 |
+
self.data_files = data_files
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
class LexGLUE(datasets.GeneratorBasedBuilder):
|
95 |
+
"""LegalGLUE: A Benchmark Dataset for Legal Language Understanding"""
|
96 |
+
|
97 |
+
BUILDER_CONFIGS = [
|
98 |
+
LexGlueConfig(
|
99 |
+
name="german_ler",
|
100 |
+
description=textwrap.dedent(
|
101 |
+
"""\
|
102 |
+
description"""
|
103 |
+
),
|
104 |
+
label_classes=GERMAN_LER,
|
105 |
+
multi_label=False,
|
106 |
+
data_url="https://raw.githubusercontent.com/elenanereiss/Legal-Entity-Recognition/master/data/dataset_courts.zip",
|
107 |
+
data_files=["bag.conll", "bfh.conll", "bgh.conll", "bpatg.conll", "bsg.conll", "bverfg.conll", "bverwg.conll"],
|
108 |
+
homepage="https://github.com/elenanereiss/Legal-Entity-Recognition",
|
109 |
+
citation=textwrap.dedent("""\
|
110 |
+
@inproceedings{leitner2019fine,
|
111 |
+
author = {Elena Leitner and Georg Rehm and Julian Moreno-Schneider},
|
112 |
+
title = {{Fine-grained Named Entity Recognition in Legal Documents}},
|
113 |
+
booktitle = {Semantic Systems. The Power of AI and Knowledge
|
114 |
+
Graphs. Proceedings of the 15th International Conference
|
115 |
+
(SEMANTiCS 2019)},
|
116 |
+
year = 2019,
|
117 |
+
editor = {Maribel Acosta and Philippe Cudré-Mauroux and Maria
|
118 |
+
Maleshkova and Tassilo Pellegrini and Harald Sack and York
|
119 |
+
Sure-Vetter},
|
120 |
+
keywords = {aip},
|
121 |
+
publisher = {Springer},
|
122 |
+
series = {Lecture Notes in Computer Science},
|
123 |
+
number = {11702},
|
124 |
+
address = {Karlsruhe, Germany},
|
125 |
+
month = 9,
|
126 |
+
note = {10/11 September 2019},
|
127 |
+
pages = {272--287},
|
128 |
+
pdf = {https://link.springer.com/content/pdf/10.1007%2F978-3-030-33220-4_20.pdf}}
|
129 |
+
""")
|
130 |
+
)
|
131 |
+
]
|
132 |
+
|
133 |
+
def _info(self):
|
134 |
+
if self.config.name == "german_ler":
|
135 |
+
features = {
|
136 |
+
"id": datasets.Value("string"),
|
137 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
138 |
+
"ner_tags": datasets.Sequence(
|
139 |
+
datasets.features.ClassLabel(
|
140 |
+
names=self.config.label_classes
|
141 |
+
)
|
142 |
+
)
|
143 |
+
}
|
144 |
+
|
145 |
+
return datasets.DatasetInfo(
|
146 |
+
description=self.config.description,
|
147 |
+
features=datasets.Features(features),
|
148 |
+
homepage=self.config.homepage,
|
149 |
+
citation=self.config.citation,
|
150 |
+
)
|
151 |
+
|
152 |
+
def _split_generators(self, dl_manager):
|
153 |
+
archive = dl_manager.download(self.config.data_url)
|
154 |
+
if self.config_name == "german_ler":
|
155 |
+
return datasets.SplitGenerator(
|
156 |
+
name=datasets.Split.TRAIN,
|
157 |
+
# These kwargs will be passed to _generate_examples
|
158 |
+
gen_kwargs={
|
159 |
+
"filepath": self.config.data_files,
|
160 |
+
"split": "train",
|
161 |
+
"files": dl_manager.iter_archive(archive),
|
162 |
+
},
|
163 |
+
)
|
164 |
+
else:
|
165 |
+
return [
|
166 |
+
datasets.SplitGenerator(
|
167 |
+
name=datasets.Split.TRAIN,
|
168 |
+
# These kwargs will be passed to _generate_examples
|
169 |
+
gen_kwargs={
|
170 |
+
"filepath": self.config.data_files,
|
171 |
+
"split": "train",
|
172 |
+
"files": dl_manager.iter_archive(archive),
|
173 |
+
},
|
174 |
+
),
|
175 |
+
datasets.SplitGenerator(
|
176 |
+
name=datasets.Split.TEST,
|
177 |
+
# These kwargs will be passed to _generate_examples
|
178 |
+
gen_kwargs={
|
179 |
+
"filepath": self.config.data_files,
|
180 |
+
"split": "test",
|
181 |
+
"files": dl_manager.iter_archive(archive),
|
182 |
+
},
|
183 |
+
),
|
184 |
+
datasets.SplitGenerator(
|
185 |
+
name=datasets.Split.VALIDATION,
|
186 |
+
# These kwargs will be passed to _generate_examples
|
187 |
+
gen_kwargs={
|
188 |
+
"filepath": self.config.data_files,
|
189 |
+
"split": "validation",
|
190 |
+
"files": dl_manager.iter_archive(archive),
|
191 |
+
},
|
192 |
+
),
|
193 |
+
]
|
194 |
+
|
195 |
+
def _generate_examples(self, filepath, split, files):
|
196 |
+
if self.config_name == "german_ler":
|
197 |
+
texts, labels = [], []
|
198 |
+
for path, file in files:
|
199 |
+
if path in filepath:
|
200 |
+
raw_text = file.read_text(encoding="utf-8").strip()
|
201 |
+
raw_sentences = re.split(r'\n\t?\n', raw_text)
|
202 |
+
|
203 |
+
for sentence in raw_sentences:
|
204 |
+
tokens = []
|
205 |
+
tags = []
|
206 |
+
for line in sentence.split('\n'):
|
207 |
+
token, tag = line.split()
|
208 |
+
tokens.append(token)
|
209 |
+
tags.append(tag)
|
210 |
+
texts.append(tokens)
|
211 |
+
labels.append(tags)
|
212 |
+
for i in enumerate(texts):
|
213 |
+
tokens = text[i]
|
214 |
+
ner_tags = labels[i]
|
215 |
+
yield i, {
|
216 |
+
"id": str(i),
|
217 |
+
"tokens": tokens,
|
218 |
+
"ner_tags": ner_tags,
|
219 |
+
}
|