jensjorisdecorte commited on
Commit
5a043b6
1 Parent(s): 5997859

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -3
README.md CHANGED
@@ -1,3 +1,40 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ task_categories:
4
+ - text-classification
5
+ language:
6
+ - en
7
+ tags:
8
+ - Skill Extraction
9
+ pretty_name: Skill Extraction - TechWolf
10
+ size_categories:
11
+ - n<1K
12
+ ---
13
+ # Skill Extraction with ESCO skills - TechWolf subset
14
+
15
+ ## Dataset Description
16
+
17
+ - **Paper:** https://arxiv.org/abs/2307.10778
18
+ - **Point of Contact:** [email protected]
19
+
20
+ ## Dataset Summary
21
+
22
+ The `TECHWOLF` subset, although smaller, represents a more generic distribution of job descriptions and skill spans. [ESCO](https://esco.ec.europa.eu/en/classification/skill_main) skills are directly annotated on the full sentence level, thus omitting the intermediate span identification step. ESCO v1.1.0 is used.
23
+
24
+ This dataset is part of a three-part evaluation dataset for skill extraction:
25
+ 1. [skill-extraction-tech](https://huggingface.co/datasets/jensjorisdecorte/skill-extraction-tech)
26
+ 2. [skill-extraction-house](https://huggingface.co/datasets/jensjorisdecorte/skill-extraction-house)
27
+ 3. [skill-extraction-techwolf](https://huggingface.co/datasets/jensjorisdecorte/skill-extraction-techwolf)
28
+
29
+ ### Citation Information
30
+
31
+ If you use this dataset, please include the following reference:
32
+
33
+ ```
34
+ @article{decorte2023extreme,
35
+ title={Extreme multi-label skill extraction training using large language models},
36
+ author={Decorte, Jens-Joris and Verlinden, Severine and Van Hautte, Jeroen and Deleu, Johannes and Develder, Chris and Demeester, Thomas},
37
+ journal={arXiv preprint arXiv:2307.10778},
38
+ year={2023}
39
+ }
40
+ ```