--- license: mit task_categories: - text-classification language: - en tags: - Skill Extraction pretty_name: Skill Extraction - TECH size_categories: - n<1K --- # Skill Extraction with ESCO skills - TECH subset ## Dataset Description - **Paper:** https://arxiv.org/abs/2209.05987 - **Point of Contact:** jensjoris@techwolf.ai ## Dataset Summary This dataset contains an extension of the `TECH` subset form the [SkillSpan](https://arxiv.org/abs/2204.12811) dataset, in which spans of skill mentions in sentences have been labeled with corresponding [ESCO](https://esco.ec.europa.eu/en/classification/skill_main) skills (ESCO v1.1.0). This dataset is part of a three-part evaluation dataset for skill extraction: 1. [**skill-extraction-tech**](https://huggingface.co/datasets/jensjorisdecorte/skill-extraction-tech) 2. [**skill-extraction-house**](https://huggingface.co/datasets/jensjorisdecorte/skill-extraction-house) 3. [**skill-extraction-techwolf**](https://huggingface.co/datasets/jensjorisdecorte/skill-extraction-techwolf) ### Citation Information If you use this dataset, please include the following reference: ``` @inproceedings{decorte2022design, articleno = {{4}}, author = {{Decorte, Jens-Joris and Van Hautte, Jeroen and Deleu, Johannes and Develder, Chris and Demeester, Thomas}}, booktitle = {{Proceedings of the 2nd Workshop on Recommender Systems for Human Resources (RecSys-in-HR 2022)}}, editor = {{Kaya, Mesut and Bogers, Toine and Graus, David and Mesbah, Sepideh and Johnson, Chris and GutiƩrrez, Francisco}}, isbn = {{9781450398565}}, issn = {{1613-0073}}, language = {{eng}}, location = {{Seatle, USA}}, pages = {{7}}, publisher = {{CEUR}}, title = {{Design of negative sampling strategies for distantly supervised skill extraction}}, url = {{https://ceur-ws.org/Vol-3218/RecSysHR2022-paper_4.pdf}}, volume = {{3218}}, year = {{2022}}, } ```