Datasets:
File size: 11,434 Bytes
5d5ab1d fe450dd 5d5ab1d 5340866 ad1211b 5d5ab1d 97cff20 5d5ab1d fe450dd 5d5ab1d ad1211b fe450dd 5d5ab1d ad1211b 97cff20 ce1b4f4 ad1211b ce1b4f4 ad1211b ce1b4f4 5340866 5d5ab1d fe450dd 5d5ab1d fe450dd ce1b4f4 5d5ab1d 98fe10f ce1b4f4 97cff20 5d5ab1d fe450dd 5d5ab1d 5340866 ce1b4f4 5340866 ce1b4f4 5d5ab1d ce1b4f4 fe450dd 5d5ab1d ce1b4f4 5d5ab1d fe450dd ce1b4f4 fe450dd ce1b4f4 fe450dd ce1b4f4 fe450dd ce1b4f4 5d5ab1d 5340866 5d5ab1d 5340866 ce1b4f4 ad1211b 97cff20 ad1211b 97cff20 67afdfb 5340866 97cff20 20d8a42 97cff20 67afdfb 20d8a42 98fe10f 97cff20 67afdfb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Dataset script for UI Referring Expressions based on the UIBert RefExp dataset."""
import csv
import glob
import os
import tensorflow as tf
import re
import datasets
import json
import numpy as np
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@misc{bai2021uibert,
title={UIBert: Learning Generic Multimodal Representations for UI Understanding},
author={Chongyang Bai and Xiaoxue Zang and Ying Xu and Srinivas Sunkara and Abhinav Rastogi and Jindong Chen and Blaise Aguera y Arcas},
year={2021},
eprint={2107.13731},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This dataset is intended for UI understanding, referring expression and action automation model training. It's based on the UIBert RefExp dataset from Google Research, which is based on the RICO dataset.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://github.com/google-research-datasets/uibert"
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = "CC BY 4.0"
# Add link to the official dataset URLs here
# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_DATA_URLs = {
"ui_refexp": "https://storage.googleapis.com/crowdstf-rico-uiuc-4540/rico_dataset_v0.1/unique_uis.tar.gz"
# "https://huggingface.co/datasets/ncoop57/rico_captions/resolve/main/captions_hierarchies_images_filtered.zip",
}
_METADATA_URLS = {
"ui_refexp": {
"train": "https://github.com/google-research-datasets/uibert/raw/main/ref_exp/train.tfrecord",
"validation": "https://github.com/google-research-datasets/uibert/raw/main/ref_exp/dev.tfrecord",
"test": "https://github.com/google-research-datasets/uibert/raw/main/ref_exp/test.tfrecord"
}
}
def tfrecord2list(tfr_file: None):
"""Filter and convert refexp tfrecord file to a list of dict object.
Each sample in the list is a dict with the following keys: (image_id, prompt, target_bounding_box)"""
raw_tfr_dataset = tf.data.TFRecordDataset([tfr_file])
count = 0
donut_refexp_dict = []
for raw_record in raw_tfr_dataset:
count += 1
example = tf.train.Example()
example.ParseFromString(raw_record.numpy())
# print(f"total UI objects in this sample: {len(example.features.feature['image/object/bbox/xmin'].float_list.value)}")
# print(f"feature keys: {example.features.feature.keys}")
donut_refexp = {}
image_id = example.features.feature['image/id'].bytes_list.value[0].decode()
donut_refexp["image_id"] = image_id
donut_refexp["prompt"] = example.features.feature["image/ref_exp/text"].bytes_list.value[0].decode()
object_idx = example.features.feature["image/ref_exp/label"].int64_list.value[0]
object_idx = int(object_idx)
# print(f"object_idx: {object_idx}")
object_bb = {}
# print(f"example.features.feature['image/object/bbox/xmin']: {example.features.feature['image/object/bbox/xmin'].float_list.value[object_idx]}")
object_bb["xmin"] = example.features.feature['image/object/bbox/xmin'].float_list.value[object_idx]
object_bb["ymin"] = example.features.feature['image/object/bbox/ymin'].float_list.value[object_idx]
object_bb["xmax"] = example.features.feature['image/object/bbox/xmax'].float_list.value[object_idx]
object_bb["ymax"] = example.features.feature['image/object/bbox/ymax'].float_list.value[object_idx]
donut_refexp["target_bounding_box"] = object_bb
donut_refexp_dict.append(donut_refexp)
if count != 3:
continue
print(f"Donut refexp: {donut_refexp}")
# for key, feature in example.features.feature.items():
# if key in ['image/id', "image/ref_exp/text", "image/ref_exp/label", 'image/object/bbox/xmin', 'image/object/bbox/ymin', 'image/object/bbox/xmax', 'image/object/bbox/ymax']:
# print(key, feature)
print(f"Total samples in the raw dataset: {count}")
return donut_refexp_dict
class UIRefExp(datasets.GeneratorBasedBuilder):
"""Dataset with (image, question, answer) fields derive from UIBert RefExp."""
VERSION = datasets.Version("1.1.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="ui_refexp",
version=VERSION,
description="Contains 66k+ unique UI screens. For each UI, we present a screenshot (JPG file) and the text shown on the screen that was extracted using an OCR model.",
)
# ,
# # datasets.BuilderConfig(
# # name="screenshots_captions_filtered",
# # version=VERSION,
# # description="Contains 25k unique UI screens. For each UI, we present a screenshot (JPG file) and the text shown on the screen that was extracted using an OCR model. Filtering was done as discussed in this paper: https://aclanthology.org/2020.acl-main.729.pdf",
# # ),
]
DEFAULT_CONFIG_NAME = "ui_refexp"
def _info(self):
features = datasets.Features(
{
"image": datasets.Image(),
"image_id": datasets.Value("string"),
"image_file_path": datasets.Value("string"),
# click the search button next to menu drawer at the top of the screen
"prompt": datasets.Value("string"),
# json: {xmin, ymin, xmax, ymax}, normalized screen reference values between 0 and 1
"target_bounding_box": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
# download and extract TFRecord labeling metadata
local_tfrs = {}
for split, tfrecord_url in _METADATA_URLS[self.config.name].items():
local_tfr_file = dl_manager.download(tfrecord_url)
local_tfrs[split] = local_tfr_file
# download image files
image_urls = _DATA_URLs[self.config.name]
archive_path = dl_manager.download(image_urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"metadata_file": local_tfrs["train"],
"images": dl_manager.iter_archive(archive_path),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"metadata_file": local_tfrs["validation"],
"images": dl_manager.iter_archive(archive_path),
"split": "validation",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"metadata_file": local_tfrs["test"],
"images": dl_manager.iter_archive(archive_path),
"split": "test",
},
)
]
def _generate_examples(
self,
metadata_file,
images,
split, # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
):
"""Yields examples as (key, example) tuples."""
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is here for legacy reason (tfds) and is not important in itself.
# filter tfrecord and convert to json
metadata = tfrecord2list(metadata_file)
files_to_keep = set()
image_labels = {}
for sample in metadata:
image_id = sample["image_id"]
files_to_keep.add(image_id)
labels = image_labels.get(image_id)
if isinstance(labels, list):
labels.append(sample)
else:
labels = [sample]
image_labels[image_id] = labels
_id = 0
for file_path, file_obj in images:
image_id = re.search("(\d+).jpg", file_path)
if image_id:
image_id = image_id.group(1)
if image_id in files_to_keep:
image_bytes = file_obj.read()
for labels in image_labels[image_id]:
bb_json = json.dumps(labels["target_bounding_box"])
yield _id, {
"image": {"path": file_path, "bytes": image_bytes},
"image_id": image_id,
"image_file_path": file_path,
"prompt": labels["prompt"],
"target_bounding_box": bb_json
}
_id += 1
|