import ftfy import json import random random.seed(1) import argparse import ir_datasets from tqdm.auto import tqdm def load_examples(base_dataset): dataset = ir_datasets.load(base_dataset) documents = {} for doc in tqdm( dataset.docs_iter(), total=dataset.docs_count(), desc="Loading documents" ): text = ( f"{doc.title} {doc.text}" if "title" in dataset.docs_cls()._fields else doc.text ) documents[doc.doc_id] = ftfy.fix_text(text) queries = {} for query in dataset.queries_iter(): queries[query.query_id] = ftfy.fix_text(query.text) return [ (queries[qrel.query_id], documents[qrel.doc_id]) for qrel in dataset.qrels_iter() ] if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--num_examples', default=500_000) parser.add_argument('--dataset', default='beir/msmarco/train') parser.add_argument('--output', required=True) args = parser.parse_args() examples = load_examples(args.dataset) random.shuffle(examples) with open(args.output, 'w') as f: for (query, document) in tqdm(examples[:args.num_examples], total=args.num_examples, desc='Writing'): f.write(json.dumps({'query': query, 'document': document}) + '\n')