Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
csv
Languages:
Chinese
Size:
10K - 100K
License:
File size: 24,852 Bytes
093556e bd8db87 2f56cfe 7dac5b8 8325ef1 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 4045b7e ffe286b 8a07398 8004349 4045b7e 8004349 4045b7e 8004349 093556e 2f56cfe 5dc359f 2323a5d 2f56cfe 12b8642 761cc30 40d66eb e66ca7c 68b0770 40d66eb dda89f9 40d66eb 761cc30 4c066b7 de39ad4 e6c4cd8 761cc30 bf6ebb6 761cc30 93ab405 761cc30 602cc1e 761cc30 93ab405 bf6ebb6 62151e5 761cc30 602cc1e 761cc30 6e13393 761cc30 12b8642 761cc30 62151e5 761cc30 180b261 f6d66bf 40d66eb 6e13393 40d66eb 6e13393 6578b92 6e13393 6578b92 6e13393 40d66eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 |
---
license: mit
license_name: mit
task_categories:
- question-answering
language:
- zh
tags:
- traditional chinese
- finance
- medical
- taiwan
- benchmark
- zh-tw
- zh-hant
pretty_name: tmmlu++
size_categories:
- 100K<n<1M
configs:
- config_name: engineering_math
data_files:
- split: train
path: "data/engineering_math_dev.csv"
- split: validation
path: "data/engineering_math_val.csv"
- split: test
path: "data/engineering_math_test.csv"
- config_name: dentistry
data_files:
- split: train
path: "data/dentistry_dev.csv"
- split: validation
path: "data/dentistry_val.csv"
- split: test
path: "data/dentistry_test.csv"
- config_name: traditional_chinese_medicine_clinical_medicine
data_files:
- split: train
path: "data/traditional_chinese_medicine_clinical_medicine_dev.csv"
- split: validation
path: "data/traditional_chinese_medicine_clinical_medicine_val.csv"
- split: test
path: "data/traditional_chinese_medicine_clinical_medicine_test.csv"
- config_name: clinical_psychology
data_files:
- split: train
path: "data/clinical_psychology_dev.csv"
- split: validation
path: "data/clinical_psychology_val.csv"
- split: test
path: "data/clinical_psychology_test.csv"
- config_name: technical
data_files:
- split: train
path: "data/technical_dev.csv"
- split: validation
path: "data/technical_val.csv"
- split: test
path: "data/technical_test.csv"
- config_name: culinary_skills
data_files:
- split: train
path: "data/culinary_skills_dev.csv"
- split: validation
path: "data/culinary_skills_val.csv"
- split: test
path: "data/culinary_skills_test.csv"
- config_name: mechanical
data_files:
- split: train
path: "data/mechanical_dev.csv"
- split: validation
path: "data/mechanical_val.csv"
- split: test
path: "data/mechanical_test.csv"
- config_name: logic_reasoning
data_files:
- split: train
path: "data/logic_reasoning_dev.csv"
- split: validation
path: "data/logic_reasoning_val.csv"
- split: test
path: "data/logic_reasoning_test.csv"
- config_name: real_estate
data_files:
- split: train
path: "data/real_estate_dev.csv"
- split: validation
path: "data/real_estate_val.csv"
- split: test
path: "data/real_estate_test.csv"
- config_name: general_principles_of_law
data_files:
- split: train
path: "data/general_principles_of_law_dev.csv"
- split: validation
path: "data/general_principles_of_law_val.csv"
- split: test
path: "data/general_principles_of_law_test.csv"
- config_name: finance_banking
data_files:
- split: train
path: "data/finance_banking_dev.csv"
- split: validation
path: "data/finance_banking_val.csv"
- split: test
path: "data/finance_banking_test.csv"
- config_name: anti_money_laundering
data_files:
- split: train
path: "data/anti_money_laundering_dev.csv"
- split: validation
path: "data/anti_money_laundering_val.csv"
- split: test
path: "data/anti_money_laundering_test.csv"
- config_name: ttqav2
data_files:
- split: train
path: "data/ttqav2_dev.csv"
- split: validation
path: "data/ttqav2_val.csv"
- split: test
path: "data/ttqav2_test.csv"
- config_name: marketing_management
data_files:
- split: train
path: "data/marketing_management_dev.csv"
- split: validation
path: "data/marketing_management_val.csv"
- split: test
path: "data/marketing_management_test.csv"
- config_name: business_management
data_files:
- split: train
path: "data/business_management_dev.csv"
- split: validation
path: "data/business_management_val.csv"
- split: test
path: "data/business_management_test.csv"
- config_name: organic_chemistry
data_files:
- split: train
path: "data/organic_chemistry_dev.csv"
- split: validation
path: "data/organic_chemistry_val.csv"
- split: test
path: "data/organic_chemistry_test.csv"
- config_name: advance_chemistry
data_files:
- split: train
path: "data/advance_chemistry_dev.csv"
- split: validation
path: "data/advance_chemistry_val.csv"
- split: test
path: "data/advance_chemistry_test.csv"
- config_name: physics
data_files:
- split: train
path: "data/physics_dev.csv"
- split: validation
path: "data/physics_val.csv"
- split: test
path: "data/physics_test.csv"
- config_name: secondary_physics
data_files:
- split: train
path: "data/secondary_physics_dev.csv"
- split: validation
path: "data/secondary_physics_val.csv"
- split: test
path: "data/secondary_physics_test.csv"
- config_name: human_behavior
data_files:
- split: train
path: "data/human_behavior_dev.csv"
- split: validation
path: "data/human_behavior_val.csv"
- split: test
path: "data/human_behavior_test.csv"
- config_name: national_protection
data_files:
- split: train
path: "data/national_protection_dev.csv"
- split: validation
path: "data/national_protection_val.csv"
- split: test
path: "data/national_protection_test.csv"
- config_name: jce_humanities
data_files:
- split: train
path: "data/jce_humanities_dev.csv"
- split: validation
path: "data/jce_humanities_val.csv"
- split: test
path: "data/jce_humanities_test.csv"
- config_name: politic_science
data_files:
- split: train
path: "data/politic_science_dev.csv"
- split: validation
path: "data/politic_science_val.csv"
- split: test
path: "data/politic_science_test.csv"
- config_name: agriculture
data_files:
- split: train
path: "data/agriculture_dev.csv"
- split: validation
path: "data/agriculture_val.csv"
- split: test
path: "data/agriculture_test.csv"
- config_name: official_document_management
data_files:
- split: train
path: "data/official_document_management_dev.csv"
- split: validation
path: "data/official_document_management_val.csv"
- split: test
path: "data/official_document_management_test.csv"
- config_name: financial_analysis
data_files:
- split: train
path: "data/financial_analysis_dev.csv"
- split: validation
path: "data/financial_analysis_val.csv"
- split: test
path: "data/financial_analysis_test.csv"
- config_name: pharmacy
data_files:
- split: train
path: "data/pharmacy_dev.csv"
- split: validation
path: "data/pharmacy_val.csv"
- split: test
path: "data/pharmacy_test.csv"
- config_name: educational_psychology
data_files:
- split: train
path: "data/educational_psychology_dev.csv"
- split: validation
path: "data/educational_psychology_val.csv"
- split: test
path: "data/educational_psychology_test.csv"
- config_name: statistics_and_machine_learning
data_files:
- split: train
path: "data/statistics_and_machine_learning_dev.csv"
- split: validation
path: "data/statistics_and_machine_learning_val.csv"
- split: test
path: "data/statistics_and_machine_learning_test.csv"
- config_name: management_accounting
data_files:
- split: train
path: "data/management_accounting_dev.csv"
- split: validation
path: "data/management_accounting_val.csv"
- split: test
path: "data/management_accounting_test.csv"
- config_name: introduction_to_law
data_files:
- split: train
path: "data/introduction_to_law_dev.csv"
- split: validation
path: "data/introduction_to_law_val.csv"
- split: test
path: "data/introduction_to_law_test.csv"
- config_name: computer_science
data_files:
- split: train
path: "data/computer_science_dev.csv"
- split: validation
path: "data/computer_science_val.csv"
- split: test
path: "data/computer_science_test.csv"
- config_name: veterinary_pathology
data_files:
- split: train
path: "data/veterinary_pathology_dev.csv"
- split: validation
path: "data/veterinary_pathology_val.csv"
- split: test
path: "data/veterinary_pathology_test.csv"
- config_name: accounting
data_files:
- split: train
path: "data/accounting_dev.csv"
- split: validation
path: "data/accounting_val.csv"
- split: test
path: "data/accounting_test.csv"
- config_name: fire_science
data_files:
- split: train
path: "data/fire_science_dev.csv"
- split: validation
path: "data/fire_science_val.csv"
- split: test
path: "data/fire_science_test.csv"
- config_name: optometry
data_files:
- split: train
path: "data/optometry_dev.csv"
- split: validation
path: "data/optometry_val.csv"
- split: test
path: "data/optometry_test.csv"
- config_name: insurance_studies
data_files:
- split: train
path: "data/insurance_studies_dev.csv"
- split: validation
path: "data/insurance_studies_val.csv"
- split: test
path: "data/insurance_studies_test.csv"
- config_name: pharmacology
data_files:
- split: train
path: "data/pharmacology_dev.csv"
- split: validation
path: "data/pharmacology_val.csv"
- split: test
path: "data/pharmacology_test.csv"
- config_name: taxation
data_files:
- split: train
path: "data/taxation_dev.csv"
- split: validation
path: "data/taxation_val.csv"
- split: test
path: "data/taxation_test.csv"
- config_name: trust_practice
data_files:
- split: train
path: "data/trust_practice_dev.csv"
- split: validation
path: "data/trust_practice_val.csv"
- split: test
path: "data/trust_practice_test.csv"
- config_name: geography_of_taiwan
data_files:
- split: train
path: "data/geography_of_taiwan_dev.csv"
- split: validation
path: "data/geography_of_taiwan_val.csv"
- split: test
path: "data/geography_of_taiwan_test.csv"
- config_name: physical_education
data_files:
- split: train
path: "data/physical_education_dev.csv"
- split: validation
path: "data/physical_education_val.csv"
- split: test
path: "data/physical_education_test.csv"
- config_name: auditing
data_files:
- split: train
path: "data/auditing_dev.csv"
- split: validation
path: "data/auditing_val.csv"
- split: test
path: "data/auditing_test.csv"
- config_name: administrative_law
data_files:
- split: train
path: "data/administrative_law_dev.csv"
- split: validation
path: "data/administrative_law_val.csv"
- split: test
path: "data/administrative_law_test.csv"
- config_name: education_(profession_level)
data_files:
- split: train
path: "data/education_(profession_level)_dev.csv"
- split: validation
path: "data/education_(profession_level)_val.csv"
- split: test
path: "data/education_(profession_level)_test.csv"
- config_name: economics
data_files:
- split: train
path: "data/economics_dev.csv"
- split: validation
path: "data/economics_val.csv"
- split: test
path: "data/economics_test.csv"
- config_name: veterinary_pharmacology
data_files:
- split: train
path: "data/veterinary_pharmacology_dev.csv"
- split: validation
path: "data/veterinary_pharmacology_val.csv"
- split: test
path: "data/veterinary_pharmacology_test.csv"
- config_name: nautical_science
data_files:
- split: train
path: "data/nautical_science_dev.csv"
- split: validation
path: "data/nautical_science_val.csv"
- split: test
path: "data/nautical_science_test.csv"
- config_name: occupational_therapy_for_psychological_disorders
data_files:
- split: train
path: "data/occupational_therapy_for_psychological_disorders_dev.csv"
- split: validation
path: "data/occupational_therapy_for_psychological_disorders_val.csv"
- split: test
path: "data/occupational_therapy_for_psychological_disorders_test.csv"
- config_name: basic_medical_science
data_files:
- split: train
path: "data/basic_medical_science_dev.csv"
- split: validation
path: "data/basic_medical_science_val.csv"
- split: test
path: "data/basic_medical_science_test.csv"
- config_name: macroeconomics
data_files:
- split: train
path: "data/macroeconomics_dev.csv"
- split: validation
path: "data/macroeconomics_val.csv"
- split: test
path: "data/macroeconomics_test.csv"
- config_name: trade
data_files:
- split: train
path: "data/trade_dev.csv"
- split: validation
path: "data/trade_val.csv"
- split: test
path: "data/trade_test.csv"
- config_name: chinese_language_and_literature
data_files:
- split: train
path: "data/chinese_language_and_literature_dev.csv"
- split: validation
path: "data/chinese_language_and_literature_val.csv"
- split: test
path: "data/chinese_language_and_literature_test.csv"
- config_name: tve_design
data_files:
- split: train
path: "data/tve_design_dev.csv"
- split: validation
path: "data/tve_design_val.csv"
- split: test
path: "data/tve_design_test.csv"
- config_name: junior_science_exam
data_files:
- split: train
path: "data/junior_science_exam_dev.csv"
- split: validation
path: "data/junior_science_exam_val.csv"
- split: test
path: "data/junior_science_exam_test.csv"
- config_name: junior_math_exam
data_files:
- split: train
path: "data/junior_math_exam_dev.csv"
- split: validation
path: "data/junior_math_exam_val.csv"
- split: test
path: "data/junior_math_exam_test.csv"
- config_name: junior_chinese_exam
data_files:
- split: train
path: "data/junior_chinese_exam_dev.csv"
- split: validation
path: "data/junior_chinese_exam_val.csv"
- split: test
path: "data/junior_chinese_exam_test.csv"
- config_name: junior_social_studies
data_files:
- split: train
path: "data/junior_social_studies_dev.csv"
- split: validation
path: "data/junior_social_studies_val.csv"
- split: test
path: "data/junior_social_studies_test.csv"
- config_name: tve_mathematics
data_files:
- split: train
path: "data/tve_mathematics_dev.csv"
- split: validation
path: "data/tve_mathematics_val.csv"
- split: test
path: "data/tve_mathematics_test.csv"
- config_name: tve_chinese_language
data_files:
- split: train
path: "data/tve_chinese_language_dev.csv"
- split: validation
path: "data/tve_chinese_language_val.csv"
- split: test
path: "data/tve_chinese_language_test.csv"
- config_name: tve_natural_sciences
data_files:
- split: train
path: "data/tve_natural_sciences_dev.csv"
- split: validation
path: "data/tve_natural_sciences_val.csv"
- split: test
path: "data/tve_natural_sciences_test.csv"
- config_name: junior_chemistry
data_files:
- split: train
path: "data/junior_chemistry_dev.csv"
- split: validation
path: "data/junior_chemistry_val.csv"
- split: test
path: "data/junior_chemistry_test.csv"
- config_name: music
data_files:
- split: train
path: "data/music_dev.csv"
- split: validation
path: "data/music_val.csv"
- split: test
path: "data/music_test.csv"
- config_name: education
data_files:
- split: train
path: "data/education_dev.csv"
- split: validation
path: "data/education_val.csv"
- split: test
path: "data/education_test.csv"
- config_name: three_principles_of_people
data_files:
- split: train
path: "data/three_principles_of_people_dev.csv"
- split: validation
path: "data/three_principles_of_people_val.csv"
- split: test
path: "data/three_principles_of_people_test.csv"
- config_name: taiwanese_hokkien
data_files:
- split: train
path: "data/taiwanese_hokkien_dev.csv"
- split: validation
path: "data/taiwanese_hokkien_val.csv"
- split: test
path: "data/taiwanese_hokkien_test.csv"
---
# TMMLU+ : Large scale traditional chinese massive multitask language understanding
<p align="center">
<img src="https://huggingface.co/datasets/ikala/tmmluplus/resolve/main/cover.png" alt="A close-up image of a neat paper note with a white background. The text 'TMMLU+' is written horizontally across the center of the note in bold, black. Join us to work in multimodal LLM : https://ikala.ai/recruit/" style="max-width: 400" width=400 />
</p>
We present TMMLU+, a traditional Chinese massive multitask language understanding dataset. TMMLU+ is a multiple-choice question-answering dataset featuring 66 subjects, ranging from elementary to professional level.
The TMMLU+ dataset is six times larger and contains more balanced subjects compared to its predecessor, [TMMLU](https://github.com/mtkresearch/MR-Models/tree/main/TC-Eval/data/TMMLU). We have included benchmark results in TMMLU+ from closed-source models and 20 open-weight Chinese large language models, with parameters ranging from 1.8B to 72B. The benchmark results show that Traditional Chinese variants still lag behind those trained on major Simplified Chinese models.
```python
from datasets import load_dataset
task_list = [
'engineering_math', 'dentistry', 'traditional_chinese_medicine_clinical_medicine', 'clinical_psychology', 'technical', 'culinary_skills', 'mechanical', 'logic_reasoning', 'real_estate',
'general_principles_of_law', 'finance_banking', 'anti_money_laundering', 'ttqav2', 'marketing_management', 'business_management', 'organic_chemistry', 'advance_chemistry',
'physics', 'secondary_physics', 'human_behavior', 'national_protection', 'jce_humanities', 'politic_science', 'agriculture', 'official_document_management',
'financial_analysis', 'pharmacy', 'educational_psychology', 'statistics_and_machine_learning', 'management_accounting', 'introduction_to_law', 'computer_science', 'veterinary_pathology',
'accounting', 'fire_science', 'optometry', 'insurance_studies', 'pharmacology', 'taxation', 'trust_practice', 'geography_of_taiwan', 'physical_education', 'auditing', 'administrative_law',
'education_(profession_level)', 'economics', 'veterinary_pharmacology', 'nautical_science', 'occupational_therapy_for_psychological_disorders',
'basic_medical_science', 'macroeconomics', 'trade', 'chinese_language_and_literature', 'tve_design', 'junior_science_exam', 'junior_math_exam', 'junior_chinese_exam',
'junior_social_studies', 'tve_mathematics', 'tve_chinese_language', 'tve_natural_sciences', 'junior_chemistry', 'music', 'education', 'three_principles_of_people',
'taiwanese_hokkien'
]
for task in task_list:
val = load_dataset('ikala/tmmluplus', task)['validation']
dev = load_dataset('ikala/tmmluplus', task)['train']
test = load_dataset('ikala/tmmluplus', task)['test']
```
For each dataset split
```python
for row in test:
print(row)
break
>> Dataset({
features: ['question', 'A', 'B', 'C', 'D', 'answer'],
num_rows: 11
})
```
Statistic on all four categories : STEM, Social Science, Humanities, Other
| Category | Test | Dev | Validation |
|----------------------------------|-------|------|------------|
| STEM | 3458 | 70 | 385 |
| Social Sciences | 5958 | 90 | 665 |
| Humanities | 1763 | 35 | 197 |
| Other (Business, Health, Misc.) | 8939 | 135 | 995 |
| **Total** | 20118 | 330 | 2242 |
## Benchmark on direct prompting
| model | STEM | Social Science | Humanities | Other | Average |
|------------|------------|------------|------------|------------|------------|
| [Qwen/Qwen-72B](https://huggingface.co/Qwen/Qwen-72B) | 61.12 | 71.65 | 63.00 | 61.31 |64.27|
| gpt-4-0613 | 60.36 | 67.36 | 56.03 | 57.62 |60.34|
| Qwen-max | 59.92 | 66.95 | 57.43 | 56.48 |60.20|
| [Qwen/Qwen-72B-Chat](https://huggingface.co/Qwen/Qwen-72B-Chat) | 55.15 | 66.20 | 55.65 | 57.19 |58.55|
| [Qwen/Qwen-14B](https://huggingface.co/Qwen/Qwen-14B) | 46.94 | 56.69 | 49.43 | 48.81 |50.47|
| Gemini-pro | 45.38 | 57.29 | 48.80 | 48.21 |49.92|
| [01-ai/Yi-34B-Chat](https://huggingface.co/01-ai/Yi-34B-Chat) | 40.24 | 56.77 | 53.99 | 47.58 |49.64|
| [Reka Flash](https://www.reka.ai/)|45.26|52.91|46.31|43.76|47.06|
| [Qwen/Qwen-14B-Chat](https://huggingface.co/Qwen/Qwen-14B-Chat) | 43.86 | 53.29 | 44.78 | 45.13 |46.77|
| [01-ai/Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat) | 39.62 | 50.24 | 44.44 | 44.26 |44.64|
| Claude-1.3 | 42.65 | 49.33 | 42.16 | 44.14 |44.57|
| [MediaTek-Research/Breeze-7B-Instruct-v0_1](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v0_1)| 36.46 | 48.38 |45.11 |40.75 | 42.67 |
| gpt-3.5-turbo-0613 | 41.56 | 46.72 | 36.73 | 42.03 |41.76|
| [CausalLM/14B](https://huggingface.co/CausalLM/14B) | 39.83 | 44.50 | 39.61 | 41.97 |41.48|
| [Skywork/Skywork-13B-base](https://huggingface.co/Skywork/Skywork-13B-base) | 36.93 | 47.27 | 41.04 | 40.10 |41.33|
| [Qwen/Qwen-7B](https://huggingface.co/Qwen/Qwen-7B) | 37.53 | 45.48 | 38.09 | 38.96 |40.01|
| [meta-llama/Llama-3-70b-chat-hf](https://docs.together.ai/docs/inference-models) | 34.44 | 47.02 | 37.50 |39.51 | 39.62 |
| [Qwen/Qwen-7B-Chat](https://huggingface.co/Qwen/Qwen-7B-Chat) | 33.32 | 44.64 | 40.27 | 39.89 |39.53|
| [vivo-ai/BlueLM-7B-Base](https://huggingface.co/vivo-ai/BlueLM-7B-Base) | 33.94 | 41.52 | 37.38 | 38.74 |37.90|
| [baichuan-inc/Baichuan2-13B-Chat](https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat) | 29.64 | 43.73 | 37.36 | 39.88 |37.65|
| [Qwen/Qwen-1_8B](https://huggingface.co/Qwen/Qwen-1_8B) | 32.65 | 38.95 | 38.34 | 35.27 |36.30|
| Claude-2 | 39.65 | 39.09 | 28.59 | 37.47 |36.20|
| [THUDM/chatglm3-6b](https://huggingface.co/THUDM/chatglm3-6b) | 31.05 | 39.31 | 35.64 | 35.60 |35.40|
| [deepseek-ai/deepseek-llm-7b-chat](https://huggingface.co/deepseek-ai/deepseek-llm-7b-chat) | 29.82 | 42.29 | 34.24 | 34.31 |35.17|
| [CausalLM/7B](https://huggingface.co/CausalLM/7B) | 31.03 | 38.17 | 35.87 | 35.39 |35.11|
| [Azure99/blossom-v3_1-mistral-7b](https://huggingface.co/Azure99/blossom-v3_1-mistral-7b) | 32.80 | 36.91 | 32.36 | 34.53 |34.15|
| [google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it) | 31.89 | 35.70 | 34.00 | 33.79 | 33.84 |
| [Reka Edge](https://www.reka.ai/)|30.02|39.40|31.84|32.36|33.41|
| [microsoft/Orca-2-13b](https://huggingface.co/microsoft/Orca-2-13b) | 24.69 | 39.18 | 33.60 | 31.99 |32.37|
| [Qwen/Qwen-1_8B-Chat](https://huggingface.co/Qwen/Qwen-1_8B-Chat) | 26.60 | 36.36 | 31.81 | 31.96 |31.68|
| [meta-llama/Llama-3-8b-chat-hf](https://docs.together.ai/docs/inference-models) | 31.52 | 34.19 | 28.91 | 31.79 | 31.60 |
| [TigerResearch/tigerbot-13b-chat-v3](https://huggingface.co/TigerResearch/tigerbot-13b-chat-v3) | 24.73 | 29.63 | 25.72 | 27.22 |26.82|
| [hongyin/mistral-7b-80k](https://huggingface.co/hongyin/mistral-7b-80k) | 24.26 | 23.76 | 22.56 | 24.57 |23.79|
| [deepseek-ai/deepseek-llm-67b-chat](https://huggingface.co/deepseek-ai/deepseek-llm-67b-chat) | 19.10 | 26.06 | 21.51 | 21.77 |22.11|
| [yentinglin/Taiwan-LLM-13B-v2.0-chat](https://huggingface.co/yentinglin/Taiwan-LLM-13B-v2.0-chat) | 18.53 | 27.65 | 17.77 | 21.49 |21.36|
| [GeneZC/MiniChat-3B](https://huggingface.co/GeneZC/MiniChat-3B) | 17.66 | 23.35 | 22.71 | 20.34 |21.02|
| [LinkSoul/Chinese-Llama-2-7b](https://huggingface.co/LinkSoul/Chinese-Llama-2-7b) | 16.55 | 18.39 | 12.97 | 16.13 |16.01|
| [yentinglin/Taiwan-LLM-7B-v2.1-chat](https://huggingface.co/yentinglin/Taiwan-LLM-7B-v2.1-chat) | 14.99 | 16.23 | 15.00 | 16.22 |15.61|
| Claude-instant-1 | 12.52 | 17.13 | 15.10 | 13.57 |14.58|
| [FlagAlpha/Atom-7B](https://huggingface.co/FlagAlpha/Atom-7B) | 5.60 | 13.57 | 7.71 | 11.84 |9.68|
Results via [ievals](https://github.com/iKala/ievals) ( settings : 0-shot direct answering )
# Citation
```
@article{ikala2024improved,
title={An Improved Traditional Chinese Evaluation Suite for Foundation Model},
author={Tam, Zhi-Rui and Pai, Ya-Ting and Lee, Yen-Wei and Cheng, Sega and Shuai, Hong-Han},
journal={arXiv preprint arXiv:2403.01858},
year={2024}
}
```
|