File size: 27,743 Bytes
c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 fe05121 c969a91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 |
---
configs:
- config_name: default
data_files:
- split: cups_mugs_glasses
path: data/cups_mugs_glasses-*
- split: street_detail
path: data/street_detail-*
- split: sheep
path: data/sheep-*
- split: bathroom_toilet
path: data/bathroom_toilet-*
- split: freezer
path: data/freezer-*
- split: baking_tables
path: data/baking_tables-*
- split: light_source_in_kitchen
path: data/light_source_in_kitchen-*
- split: work_area
path: data/work_area-*
- split: contraceptives
path: data/contraceptives-*
- split: coins
path: data/coins-*
- split: backyard
path: data/backyard-*
- split: bike
path: data/bike-*
- split: foodstores
path: data/foodstores-*
- split: toothbrush
path: data/toothbrush-*
- split: cattle
path: data/cattle-*
- split: most_played_songs_on_the_radio
path: data/most_played_songs_on_the_radio-*
- split: plate_of_food
path: data/plate_of_food-*
- split: shaving
path: data/shaving-*
- split: car
path: data/car-*
- split: frontdoor_keys
path: data/frontdoor_keys-*
- split: goats
path: data/goats-*
- split: couch
path: data/couch-*
- split: lock_on_front_door
path: data/lock_on_front_door-*
- split: mosquito_protection
path: data/mosquito_protection-*
- split: plates
path: data/plates-*
- split: bad_outdoor_air_obstructions
path: data/bad_outdoor_air_obstructions-*
- split: ceiling
path: data/ceiling-*
- split: radio
path: data/radio-*
- split: bowls
path: data/bowls-*
- split: daylight_ostructions
path: data/daylight_ostructions-*
- split: kitchen_sink
path: data/kitchen_sink-*
- split: smoke_and_steam_exit
path: data/smoke_and_steam_exit-*
- split: alcoholic_drinks
path: data/alcoholic_drinks-*
- split: dish_racks
path: data/dish_racks-*
- split: thing_i_dream_about_having
path: data/thing_i_dream_about_having-*
- split: next_big_thing_you_are_planning_to_buy
path: data/next_big_thing_you_are_planning_to_buy-*
- split: surroundings
path: data/surroundings-*
- split: skies_outside
path: data/skies_outside-*
- split: wall_
path: data/wall_-*
- split: earings
path: data/earings-*
- split: bread_ready
path: data/bread_ready-*
- split: hand_back
path: data/hand_back-*
- split: dinner_guests
path: data/dinner_guests-*
- split: rug
path: data/rug-*
- split: cleaning_floors
path: data/cleaning_floors-*
- split: paper
path: data/paper-*
- split: moped_motorcycle
path: data/moped_motorcycle-*
- split: waste_dumps
path: data/waste_dumps-*
- split: snacks
path: data/snacks-*
- split: soccer_balls
path: data/soccer_balls-*
- split: get_water
path: data/get_water-*
- split: source_of_cool
path: data/source_of_cool-*
- split: hand_palm
path: data/hand_palm-*
- split: cigarettes
path: data/cigarettes-*
- split: drinks
path: data/drinks-*
- split: chickens
path: data/chickens-*
- split: tattoos
path: data/tattoos-*
- split: home
path: data/home-*
- split: place_where_serving_guests
path: data/place_where_serving_guests-*
- split: smog_bad_air_breathing_protection
path: data/smog_bad_air_breathing_protection-*
- split: roof
path: data/roof-*
- split: family_snapshots
path: data/family_snapshots-*
- split: carrying_water
path: data/carrying_water-*
- split: hand_washing
path: data/hand_washing-*
- split: horses
path: data/horses-*
- split: medication
path: data/medication-*
- split: dish_washing_brush_cloth
path: data/dish_washing_brush_cloth-*
- split: nicest_shoes
path: data/nicest_shoes-*
- split: water_outlet
path: data/water_outlet-*
- split: tv
path: data/tv-*
- split: air_fresheners_scents
path: data/air_fresheners_scents-*
- split: portraits
path: data/portraits-*
- split: celebrity_posters
path: data/celebrity_posters-*
- split: boat
path: data/boat-*
- split: trash_waste
path: data/trash_waste-*
- split: shower
path: data/shower-*
- split: front_door
path: data/front_door-*
- split: electric_wires
path: data/electric_wires-*
- split: photo_guide_images
path: data/photo_guide_images-*
- split: meat_markets
path: data/meat_markets-*
- split: cooking_utensils
path: data/cooking_utensils-*
- split: fishes
path: data/fishes-*
- split: stove_hob
path: data/stove_hob-*
- split: water_sources_for_doing_dishes
path: data/water_sources_for_doing_dishes-*
- split: parking_lot
path: data/parking_lot-*
- split: spices
path: data/spices-*
- split: water_sources
path: data/water_sources-*
- split: pet_foods
path: data/pet_foods-*
- split: milk_cows_or_bulls
path: data/milk_cows_or_bulls-*
- split: vegetable_markets
path: data/vegetable_markets-*
- split: wall_decoration
path: data/wall_decoration-*
- split: hair_brush_comb
path: data/hair_brush_comb-*
- split: meat_storages
path: data/meat_storages-*
- split: bedroom
path: data/bedroom-*
- split: cooking_pots
path: data/cooking_pots-*
- split: music_equipment
path: data/music_equipment-*
- split: arm_watch
path: data/arm_watch-*
- split: rehabilitation_technology
path: data/rehabilitation_technology-*
- split: elevators
path: data/elevators-*
- split: cleaning_after_toilet
path: data/cleaning_after_toilet-*
- split: storage_room
path: data/storage_room-*
- split: bread_bowls
path: data/bread_bowls-*
- split: refrigerator
path: data/refrigerator-*
- split: dish_washing_soap
path: data/dish_washing_soap-*
- split: bed
path: data/bed-*
- split: horse_stables
path: data/horse_stables-*
- split: oven
path: data/oven-*
- split: jewelry
path: data/jewelry-*
- split: bed_kids
path: data/bed_kids-*
- split: wedding_photos
path: data/wedding_photos-*
- split: children_room
path: data/children_room-*
- split: wall_clock
path: data/wall_clock-*
- split: living_room
path: data/living_room-*
- split: cleaning_equipment
path: data/cleaning_equipment-*
- split: baking_sheets
path: data/baking_sheets-*
- split: make_up
path: data/make_up-*
- split: soap_for_hands_and_body
path: data/soap_for_hands_and_body-*
- split: toys
path: data/toys-*
- split: agriculture_land
path: data/agriculture_land-*
- split: clothes
path: data/clothes-*
- split: guest_bed
path: data/guest_bed-*
- split: fishing_equipment
path: data/fishing_equipment-*
- split: ventilation
path: data/ventilation-*
- split: knifes
path: data/knifes-*
- split: necklaces
path: data/necklaces-*
- split: most_loved_toy
path: data/most_loved_toy-*
- split: armchair
path: data/armchair-*
- split: bed_hq
path: data/bed_hq-*
- split: air_cleaning_equipments
path: data/air_cleaning_equipments-*
- split: everyday_shoes
path: data/everyday_shoes-*
- split: instrument
path: data/instrument-*
- split: social_drink
path: data/social_drink-*
- split: drinking_water
path: data/drinking_water-*
- split: newspapers
path: data/newspapers-*
- split: washing_detergent
path: data/washing_detergent-*
- split: transport_of_heavy_things
path: data/transport_of_heavy_things-*
- split: floor
path: data/floor-*
- split: hallway
path: data/hallway-*
- split: salt
path: data/salt-*
- split: pen_pencils
path: data/pen_pencils-*
- split: cooking
path: data/cooking-*
- split: visit
path: data/visit-*
- split: cosmetics
path: data/cosmetics-*
- split: latest_furniture_bought
path: data/latest_furniture_bought-*
- split: play_area
path: data/play_area-*
- split: soccer_supporter_items
path: data/soccer_supporter_items-*
- split: water_purifier_solutions
path: data/water_purifier_solutions-*
- split: snack_stores
path: data/snack_stores-*
- split: wall
path: data/wall-*
- split: sitting_area
path: data/sitting_area-*
- split: wheel_barrow
path: data/wheel_barrow-*
- split: car_decorations
path: data/car_decorations-*
- split: markets
path: data/markets-*
- split: fields
path: data/fields-*
- split: replaced
path: data/replaced-*
- split: wardrobe
path: data/wardrobe-*
- split: tooth_paste
path: data/tooth_paste-*
- split: worship_places
path: data/worship_places-*
- split: source_of_heat
path: data/source_of_heat-*
- split: toilet
path: data/toilet-*
- split: piercings
path: data/piercings-*
- split: baking_tools
path: data/baking_tools-*
- split: lightsources_by_bed
path: data/lightsources_by_bed-*
- split: light_source_in_livingroom
path: data/light_source_in_livingroom-*
- split: favourite_sports_clubs
path: data/favourite_sports_clubs-*
- split: tabloids
path: data/tabloids-*
- split: books
path: data/books-*
- split: menstruation_pads_tampax
path: data/menstruation_pads_tampax-*
- split: power_outlet
path: data/power_outlet-*
- split: toilet_paper
path: data/toilet_paper-*
- split: arm_watches
path: data/arm_watches-*
- split: electricity_wires
path: data/electricity_wires-*
- split: wall_inside
path: data/wall_inside-*
- split: computer
path: data/computer-*
- split: meat_or_fish
path: data/meat_or_fish-*
- split: sources_of_drinking_water
path: data/sources_of_drinking_water-*
- split: kitchen
path: data/kitchen-*
- split: ingredients
path: data/ingredients-*
- split: baby_powder
path: data/baby_powder-*
- split: bathroom_privacy
path: data/bathroom_privacy-*
- split: vegetable_plot
path: data/vegetable_plot-*
- split: car_keys
path: data/car_keys-*
- split: icons
path: data/icons-*
- split: favorite_home_decorations
path: data/favorite_home_decorations-*
- split: tractors
path: data/tractors-*
- split: bills_of_money
path: data/bills_of_money-*
- split: cutlery
path: data/cutlery-*
- split: family
path: data/family-*
- split: teeth
path: data/teeth-*
- split: place_where_eating_dinner
path: data/place_where_eating_dinner-*
- split: grains
path: data/grains-*
- split: washing_clothes_cleaning
path: data/washing_clothes_cleaning-*
- split: fruits_and_vegetables
path: data/fruits_and_vegetables-*
- split: light_sources
path: data/light_sources-*
- split: tools
path: data/tools-*
- split: drying
path: data/drying-*
- split: street_view
path: data/street_view-*
- split: phone
path: data/phone-*
- split: idols
path: data/idols-*
- split: pet
path: data/pet-*
- split: other_transport
path: data/other_transport-*
- split: most_loved_item
path: data/most_loved_item-*
- split: glasses_or_lenses
path: data/glasses_or_lenses-*
- split: things_i_wish_i_had
path: data/things_i_wish_i_had-*
- split: table_with_food
path: data/table_with_food-*
- split: youth_culture
path: data/youth_culture-*
- split: equipment
path: data/equipment-*
- split: shoes
path: data/shoes-*
- split: coats_and_jackets
path: data/coats_and_jackets-*
- split: dishwasher
path: data/dishwasher-*
- split: vegetables
path: data/vegetables-*
- split: fruit_trees
path: data/fruit_trees-*
- split: nature_sceneries
path: data/nature_sceneries-*
- split: shampoo
path: data/shampoo-*
- split: switch_on_off
path: data/switch_on_off-*
- split: playgrounds
path: data/playgrounds-*
dataset_info:
features:
- name: id
dtype: string
- name: country_name
dtype: string
- name: country_id
dtype: string
- name: region_id
dtype: string
- name: type
dtype: string
- name: image
dtype: image
- name: topics
dtype: string
- name: place
dtype: string
- name: income
dtype: string
splits:
- name: cups_mugs_glasses
num_bytes: 994285249.0
num_examples: 333
- name: street_detail
num_bytes: 1168591117.0
num_examples: 290
- name: sheep
num_bytes: 12738586.0
num_examples: 4
- name: bathroom_toilet
num_bytes: 1129143553.0
num_examples: 350
- name: freezer
num_bytes: 515874223.0
num_examples: 187
- name: baking_tables
num_bytes: 3017644.0
num_examples: 1
- name: light_source_in_kitchen
num_bytes: 883391525.0
num_examples: 304
- name: work_area
num_bytes: 527291086.0
num_examples: 168
- name: contraceptives
num_bytes: 56130849.0
num_examples: 25
- name: coins
num_bytes: 4296291.0
num_examples: 1
- name: backyard
num_bytes: 834683499.0
num_examples: 208
- name: bike
num_bytes: 536280770.0
num_examples: 149
- name: foodstores
num_bytes: 17300865.0
num_examples: 3
- name: toothbrush
num_bytes: 1119100599.0
num_examples: 379
- name: cattle
num_bytes: 33022033.0
num_examples: 12
- name: most_played_songs_on_the_radio
num_bytes: 2804770.0
num_examples: 1
- name: plate_of_food
num_bytes: 965241961.0
num_examples: 298
- name: shaving
num_bytes: 630435242.0
num_examples: 216
- name: car
num_bytes: 356818254.0
num_examples: 154
- name: frontdoor_keys
num_bytes: 208792828.0
num_examples: 147
- name: goats
num_bytes: 94614657.0
num_examples: 24
- name: couch
num_bytes: 1038410012.0
num_examples: 306
- name: lock_on_front_door
num_bytes: 1099656984.0
num_examples: 362
- name: mosquito_protection
num_bytes: 541301592.0
num_examples: 163
- name: plates
num_bytes: 1033692373.0
num_examples: 342
- name: bad_outdoor_air_obstructions
num_bytes: 1141009.0
num_examples: 6
- name: ceiling
num_bytes: 1154394188.0
num_examples: 362
- name: radio
num_bytes: 534624094.0
num_examples: 164
- name: bowls
num_bytes: 69506612.0
num_examples: 24
- name: daylight_ostructions
num_bytes: 2457632.0
num_examples: 6
- name: kitchen_sink
num_bytes: 1077526669.0
num_examples: 334
- name: smoke_and_steam_exit
num_bytes: 735515901.0
num_examples: 233
- name: alcoholic_drinks
num_bytes: 206764191.0
num_examples: 72
- name: dish_racks
num_bytes: 1070639074.0
num_examples: 336
- name: thing_i_dream_about_having
num_bytes: 472486186.0
num_examples: 159
- name: next_big_thing_you_are_planning_to_buy
num_bytes: 426843198.0
num_examples: 153
- name: surroundings
num_bytes: 60100849.0
num_examples: 13
- name: skies_outside
num_bytes: 3351593.0
num_examples: 7
- name: wall_
num_bytes: 2818789640.0
num_examples: 877
- name: earings
num_bytes: 395054544.0
num_examples: 136
- name: bread_ready
num_bytes: 17031177.0
num_examples: 4
- name: hand_back
num_bytes: 1091816070.0
num_examples: 358
- name: dinner_guests
num_bytes: 142874232.0
num_examples: 48
- name: rug
num_bytes: 720029591.0
num_examples: 193
- name: cleaning_floors
num_bytes: 422989995.0
num_examples: 124
- name: paper
num_bytes: 1595217257.0
num_examples: 505
- name: moped_motorcycle
num_bytes: 244103066.0
num_examples: 82
- name: waste_dumps
num_bytes: 484227664.0
num_examples: 127
- name: snacks
num_bytes: 37990707.0
num_examples: 11
- name: soccer_balls
num_bytes: 11121861.0
num_examples: 3
- name: get_water
num_bytes: 312942447.0
num_examples: 80
- name: source_of_cool
num_bytes: 786516004.0
num_examples: 250
- name: hand_palm
num_bytes: 1045670614.0
num_examples: 357
- name: cigarettes
num_bytes: 124000767.0
num_examples: 30
- name: drinks
num_bytes: 218115579.0
num_examples: 75
- name: chickens
num_bytes: 271724783.0
num_examples: 71
- name: tattoos
num_bytes: 175056398.0
num_examples: 51
- name: home
num_bytes: 1873360607.0
num_examples: 550
- name: place_where_serving_guests
num_bytes: 452285557.0
num_examples: 147
- name: smog_bad_air_breathing_protection
num_bytes: 240117.0
num_examples: 2
- name: roof
num_bytes: 983562313.0
num_examples: 302
- name: family_snapshots
num_bytes: 392643354.0
num_examples: 109
- name: carrying_water
num_bytes: 3082174.0
num_examples: 1
- name: hand_washing
num_bytes: 1060102199.0
num_examples: 347
- name: horses
num_bytes: 7103900.0
num_examples: 3
- name: medication
num_bytes: 935436600.0
num_examples: 291
- name: dish_washing_brush_cloth
num_bytes: 1118661909.0
num_examples: 351
- name: nicest_shoes
num_bytes: 1178886748.0
num_examples: 350
- name: water_outlet
num_bytes: 967359266.0
num_examples: 305
- name: tv
num_bytes: 881350311.0
num_examples: 292
- name: air_fresheners_scents
num_bytes: 115395.0
num_examples: 1
- name: portraits
num_bytes: 27532067.0
num_examples: 9
- name: celebrity_posters
num_bytes: 6966565.0
num_examples: 1
- name: boat
num_bytes: 23087642.0
num_examples: 5
- name: trash_waste
num_bytes: 964196788.0
num_examples: 291
- name: shower
num_bytes: 995696782.0
num_examples: 329
- name: front_door
num_bytes: 2269861804.0
num_examples: 732
- name: electric_wires
num_bytes: 8854810.0
num_examples: 2
- name: photo_guide_images
num_bytes: 215474454.0
num_examples: 75
- name: meat_markets
num_bytes: 4634793.0
num_examples: 1
- name: cooking_utensils
num_bytes: 1023598264.0
num_examples: 301
- name: fishes
num_bytes: 159058192.0
num_examples: 58
- name: stove_hob
num_bytes: 1175724856.0
num_examples: 381
- name: water_sources_for_doing_dishes
num_bytes: 15657524.0
num_examples: 7
- name: parking_lot
num_bytes: 448364538.0
num_examples: 126
- name: spices
num_bytes: 1138126845.0
num_examples: 360
- name: water_sources
num_bytes: 39337550.0
num_examples: 12
- name: pet_foods
num_bytes: 208829264.0
num_examples: 64
- name: milk_cows_or_bulls
num_bytes: 19719273.0
num_examples: 6
- name: vegetable_markets
num_bytes: 3934905.0
num_examples: 1
- name: wall_decoration
num_bytes: 1133852833.0
num_examples: 352
- name: hair_brush_comb
num_bytes: 1069311270.0
num_examples: 331
- name: meat_storages
num_bytes: 5019867.0
num_examples: 2
- name: bedroom
num_bytes: 1383727529.0
num_examples: 399
- name: cooking_pots
num_bytes: 1263802321.0
num_examples: 384
- name: music_equipment
num_bytes: 517230560.0
num_examples: 172
- name: arm_watch
num_bytes: 298661802.0
num_examples: 101
- name: rehabilitation_technology
num_bytes: 10884034.0
num_examples: 8
- name: elevators
num_bytes: 3346981.0
num_examples: 3
- name: cleaning_after_toilet
num_bytes: 21874227.0
num_examples: 14
- name: storage_room
num_bytes: 772429217.0
num_examples: 225
- name: bread_bowls
num_bytes: 4171755.0
num_examples: 1
- name: refrigerator
num_bytes: 704561864.0
num_examples: 262
- name: dish_washing_soap
num_bytes: 1028112295.0
num_examples: 337
- name: bed
num_bytes: 2798532320.0
num_examples: 832
- name: horse_stables
num_bytes: 2030907.0
num_examples: 1
- name: oven
num_bytes: 408380446.0
num_examples: 142
- name: jewelry
num_bytes: 566520264.0
num_examples: 189
- name: bed_kids
num_bytes: 901139651.0
num_examples: 250
- name: wedding_photos
num_bytes: 266849446.0
num_examples: 83
- name: children_room
num_bytes: 677706326.0
num_examples: 196
- name: wall_clock
num_bytes: 567309624.0
num_examples: 184
- name: living_room
num_bytes: 976352363.0
num_examples: 279
- name: cleaning_equipment
num_bytes: 808855439.0
num_examples: 240
- name: baking_sheets
num_bytes: 2760341.0
num_examples: 1
- name: make_up
num_bytes: 324344448.0
num_examples: 97
- name: soap_for_hands_and_body
num_bytes: 1043814773.0
num_examples: 363
- name: toys
num_bytes: 904248551.0
num_examples: 286
- name: agriculture_land
num_bytes: 237876904.0
num_examples: 53
- name: clothes
num_bytes: 1022544251.0
num_examples: 323
- name: guest_bed
num_bytes: 504616118.0
num_examples: 164
- name: fishing_equipment
num_bytes: 4282534.0
num_examples: 1
- name: ventilation
num_bytes: 24058628.0
num_examples: 10
- name: knifes
num_bytes: 621867863.0
num_examples: 181
- name: necklaces
num_bytes: 468137237.0
num_examples: 139
- name: most_loved_toy
num_bytes: 766935172.0
num_examples: 238
- name: armchair
num_bytes: 1116948741.0
num_examples: 332
- name: bed_hq
num_bytes: 18768649.0
num_examples: 4
- name: air_cleaning_equipments
num_bytes: 562027.0
num_examples: 4
- name: everyday_shoes
num_bytes: 1282284689.0
num_examples: 365
- name: instrument
num_bytes: 201768650.0
num_examples: 64
- name: social_drink
num_bytes: 865071477.0
num_examples: 280
- name: drinking_water
num_bytes: 958784447.0
num_examples: 309
- name: newspapers
num_bytes: 25233082.0
num_examples: 7
- name: washing_detergent
num_bytes: 967584026.0
num_examples: 315
- name: transport_of_heavy_things
num_bytes: 66846208.0
num_examples: 21
- name: floor
num_bytes: 1330556621.0
num_examples: 377
- name: hallway
num_bytes: 126639302.0
num_examples: 49
- name: salt
num_bytes: 997626560.0
num_examples: 343
- name: pen_pencils
num_bytes: 937874666.0
num_examples: 288
- name: cooking
num_bytes: 2251982244.0
num_examples: 679
- name: visit
num_bytes: 4464796725.109
num_examples: 1321
- name: cosmetics
num_bytes: 362582452.0
num_examples: 123
- name: latest_furniture_bought
num_bytes: 325501347.0
num_examples: 107
- name: play_area
num_bytes: 807546710.0
num_examples: 216
- name: soccer_supporter_items
num_bytes: 3500438.0
num_examples: 3
- name: water_purifier_solutions
num_bytes: 278055.0
num_examples: 2
- name: snack_stores
num_bytes: 288627.0
num_examples: 1
- name: wall
num_bytes: 3920557387.358
num_examples: 1154
- name: sitting_area
num_bytes: 1008819886.0
num_examples: 299
- name: wheel_barrow
num_bytes: 201248243.0
num_examples: 45
- name: car_decorations
num_bytes: 5448714.0
num_examples: 1
- name: markets
num_bytes: 35468731.0
num_examples: 8
- name: fields
num_bytes: 5822273.0
num_examples: 1
- name: replaced
num_bytes: 4438189.0
num_examples: 3
- name: wardrobe
num_bytes: 1161924263.0
num_examples: 362
- name: tooth_paste
num_bytes: 992504555.0
num_examples: 334
- name: worship_places
num_bytes: 269510881.0
num_examples: 77
- name: source_of_heat
num_bytes: 453347786.0
num_examples: 145
- name: toilet
num_bytes: 2922917220.0
num_examples: 943
- name: piercings
num_bytes: 181157725.0
num_examples: 68
- name: baking_tools
num_bytes: 2321733.0
num_examples: 1
- name: lightsources_by_bed
num_bytes: 262728699.0
num_examples: 92
- name: light_source_in_livingroom
num_bytes: 895836854.0
num_examples: 307
- name: favourite_sports_clubs
num_bytes: 135961086.0
num_examples: 46
- name: tabloids
num_bytes: 9384343.0
num_examples: 2
- name: books
num_bytes: 1045990947.0
num_examples: 315
- name: menstruation_pads_tampax
num_bytes: 400849572.0
num_examples: 125
- name: power_outlet
num_bytes: 875197741.0
num_examples: 298
- name: toilet_paper
num_bytes: 908650830.0
num_examples: 294
- name: arm_watches
num_bytes: 55557790.0
num_examples: 30
- name: electricity_wires
num_bytes: 2244483.0
num_examples: 1
- name: wall_inside
num_bytes: 1174096181.0
num_examples: 358
- name: computer
num_bytes: 552454079.0
num_examples: 186
- name: meat_or_fish
num_bytes: 616043178.0
num_examples: 192
- name: sources_of_drinking_water
num_bytes: 3045397.0
num_examples: 8
- name: kitchen
num_bytes: 3049589855.0
num_examples: 967
- name: ingredients
num_bytes: 17779940.0
num_examples: 3
- name: baby_powder
num_bytes: 7773188.0
num_examples: 4
- name: bathroom_privacy
num_bytes: 898900810.0
num_examples: 283
- name: vegetable_plot
num_bytes: 283618018.0
num_examples: 71
- name: car_keys
num_bytes: 58358512.0
num_examples: 58
- name: icons
num_bytes: 47368214.0
num_examples: 188
- name: favorite_home_decorations
num_bytes: 476751718.0
num_examples: 151
- name: tractors
num_bytes: 8786272.0
num_examples: 1
- name: bills_of_money
num_bytes: 11163171.0
num_examples: 2
- name: cutlery
num_bytes: 926351889.0
num_examples: 301
- name: family
num_bytes: 1622349409.0
num_examples: 493
- name: teeth
num_bytes: 908538754.0
num_examples: 326
- name: place_where_eating_dinner
num_bytes: 1171010449.0
num_examples: 369
- name: grains
num_bytes: 1066679345.0
num_examples: 319
- name: washing_clothes_cleaning
num_bytes: 986858417.0
num_examples: 314
- name: fruits_and_vegetables
num_bytes: 664452138.0
num_examples: 210
- name: light_sources
num_bytes: 707637325.0
num_examples: 220
- name: tools
num_bytes: 900850525.0
num_examples: 252
- name: drying
num_bytes: 860669230.0
num_examples: 270
- name: street_view
num_bytes: 1270219060.0
num_examples: 353
- name: phone
num_bytes: 1002531643.0
num_examples: 326
- name: idols
num_bytes: 204194164.0
num_examples: 65
- name: pet
num_bytes: 843309370.0
num_examples: 248
- name: other_transport
num_bytes: 20219867.0
num_examples: 5
- name: most_loved_item
num_bytes: 763492723.0
num_examples: 242
- name: glasses_or_lenses
num_bytes: 406654084.0
num_examples: 148
- name: things_i_wish_i_had
num_bytes: 13208034.0
num_examples: 5
- name: table_with_food
num_bytes: 723749144.0
num_examples: 228
- name: youth_culture
num_bytes: 6899000.0
num_examples: 1
- name: equipment
num_bytes: 1330368532.0
num_examples: 413
- name: shoes
num_bytes: 2424967583.0
num_examples: 709
- name: coats_and_jackets
num_bytes: 60417863.0
num_examples: 26
- name: dishwasher
num_bytes: 189437189.0
num_examples: 55
- name: vegetables
num_bytes: 1619243098.0
num_examples: 492
- name: fruit_trees
num_bytes: 347993315.0
num_examples: 100
- name: nature_sceneries
num_bytes: 9080831.0
num_examples: 3
- name: shampoo
num_bytes: 1009790811.0
num_examples: 339
- name: switch_on_off
num_bytes: 879446769.0
num_examples: 297
- name: playgrounds
num_bytes: 35287984.0
num_examples: 7
download_size: 17029671
dataset_size: 134309090433.467
---
# Dataset Card for "dollarstreet"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |