Datasets:
Tasks:
Text Classification
Languages:
English
Size:
n<1K
ArXiv:
Tags:
Hate Speech Detection
License:
File size: 9,356 Bytes
f8dec51 14e8cc4 64f53f6 f8dec51 64f53f6 f8dec51 d576734 2d28c3f 3e1a085 d576734 d60c63c 06e068d 8d152d1 06e068d 8d152d1 06e068d 8d152d1 06e068d 8d152d1 06e068d 8d152d1 06e068d 8d152d1 06e068d 8d152d1 06e068d 8d152d1 06e068d 8d152d1 06e068d f8dec51 2d28c3f f8dec51 6a1a2cc f8dec51 6a1a2cc d60c63c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
---
annotations_creators:
- crowdsourced
- expert-generated
language_creators:
- found
- other
language:
- en
license:
- agpl-3.0
multilinguality:
- monolingual
size_categories:
- n<1K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- multi-label-classification
- sentiment-classification
paperswithcode_id: ethos
pretty_name: onlinE haTe speecH detectiOn dataSet
configs:
- binary
- multilabel
tags:
- Hate Speech Detection
dataset_info:
- config_name: binary
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': no_hate_speech
'1': hate_speech
splits:
- name: train
num_bytes: 124823
num_examples: 998
download_size: 123919
dataset_size: 124823
- config_name: multilabel
features:
- name: text
dtype: string
- name: violence
dtype:
class_label:
names:
'0': not_violent
'1': violent
- name: directed_vs_generalized
dtype:
class_label:
names:
'0': generalied
'1': directed
- name: gender
dtype:
class_label:
names:
'0': 'false'
'1': 'true'
- name: race
dtype:
class_label:
names:
'0': 'false'
'1': 'true'
- name: national_origin
dtype:
class_label:
names:
'0': 'false'
'1': 'true'
- name: disability
dtype:
class_label:
names:
'0': 'false'
'1': 'true'
- name: religion
dtype:
class_label:
names:
'0': 'false'
'1': 'true'
- name: sexual_orientation
dtype:
class_label:
names:
'0': 'false'
'1': 'true'
splits:
- name: train
num_bytes: 79112
num_examples: 433
download_size: 62836
dataset_size: 79112
---
# Dataset Card for Ethos
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [ETHOS Hate Speech Dataset](https://github.com/intelligence-csd-auth-gr/Ethos-Hate-Speech-Dataset)
- **Repository:**[ETHOS Hate Speech Dataset](https://github.com/intelligence-csd-auth-gr/Ethos-Hate-Speech-Dataset)
- **Paper:**[ETHOS: an Online Hate Speech Detection Dataset](https://arxiv.org/abs/2006.08328)
### Dataset Summary
ETHOS: onlinE haTe speecH detectiOn dataSet. This repository contains a dataset for hate speech detection on social media platforms, called Ethos. There are two variations of the dataset:
- **Ethos_Dataset_Binary**: contains 998 comments in the dataset alongside with a label about hate speech *presence* or *absence*. 565 of them do not contain hate speech, while the rest of them, 433, contain.
- **Ethos_Dataset_Multi_Label** which contains 8 labels for the 433 comments with hate speech content. These labels are *violence* (if it incites (1) or not (0) violence), *directed_vs_general* (if it is directed to a person (1) or a group (0)), and 6 labels about the category of hate speech like, *gender*, *race*, *national_origin*, *disability*, *religion* and *sexual_orientation*.
***Ethos /ˈiːθɒs/***
is a Greek word meaning “character” that is used to describe the guiding beliefs or ideals that characterize a community, nation, or ideology. The Greeks also used this word to refer to the power of music to influence emotions, behaviors, and even morals.
### Supported Tasks and Leaderboards
[More Information Needed]
- `text-classification-other-Hate Speech Detection`, `sentiment-classification`,`multi-label-classification`: The dataset can be used to train a model for hate speech detection. Moreover, it can be used as a benchmark dataset for multi label classification algorithms.
### Languages
The text in the dataset is in English.
## Dataset Structure
### Data Instances
A typical data point in the binary version comprises a comment, with a `text` containing the text and a `label` describing if a comment contains hate speech content (1 - hate-speech) or not (0 - non-hate-speech). In the multilabel version more labels like *violence* (if it incites (1) or not (0) violence), *directed_vs_general* (if it is directed to a person (1) or a group (0)), and 6 labels about the category of hate speech like, *gender*, *race*, *national_origin*, *disability*, *religion* and *sexual_orientation* are appearing.
An example from the binary version, which is offensive, but it does not contain hate speech content:
```
{'text': 'What the fuck stupid people !!!',
'label': '0'
}
```
An example from the multi-label version, which contains hate speech content towards women (gender):
```
{'text': 'You should know women's sports are a joke',
`violence`: 0,
`directed_vs_generalized`: 0,
`gender`: 1,
`race`: 0,
`national_origin`: 0,
`disability`: 0,
`religion`: 0,
`sexual_orientation`: 0
}
```
### Data Fields
Ethos Binary:
- `text`: a `string` feature containing the text of the comment.
- `label`: a classification label, with possible values including `no_hate_speech`, `hate_speech`.
Ethis Multilabel:
- `text`: a `string` feature containing the text of the comment.
- `violence`: a classification label, with possible values including `not_violent`, `violent`.
- `directed_vs_generalized`: a classification label, with possible values including `generalized`, `directed`.
- `gender`: a classification label, with possible values including `false`, `true`.
- `race`: a classification label, with possible values including `false`, `true`.
- `national_origin`: a classification label, with possible values including `false`, `true`.
- `disability`: a classification label, with possible values including `false`, `true`.
- `religion`: a classification label, with possible values including `false`, `true`.
- `sexual_orientation`: a classification label, with possible values including `false`, `true`.
### Data Splits
The data is split into binary and multilabel. Multilabel is a subset of the binary version.
| | Instances | Labels |
| ----- | ------ | ----- |
| binary | 998 | 1 |
| multilabel | 433 | 8 |
## Dataset Creation
### Curation Rationale
The dataset was build by gathering online comments in Youtube videos and reddit comments, from videos and subreddits which may attract hate speech content.
### Source Data
#### Initial Data Collection and Normalization
The initial data we used are from the hatebusters platform: [Original data used](https://intelligence.csd.auth.gr/topics/hate-speech-detection/), but they were not included in this dataset
#### Who are the source language producers?
The language producers are users of reddit and Youtube. More informations can be found in this paper: [ETHOS: an Online Hate Speech Detection Dataset](https://arxiv.org/abs/2006.08328)
### Annotations
#### Annotation process
The annotation process is detailed in the third section of this paper: [ETHOS: an Online Hate Speech Detection Dataset](https://arxiv.org/abs/2006.08328)
#### Who are the annotators?
Originally anotated by Ioannis Mollas and validated through the Figure8 platform (APEN).
### Personal and Sensitive Information
No personal and sensitive information included in the dataset.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset will help on the evolution of the automated hate speech detection tools. Those tools have great impact on preventing social issues.
### Discussion of Biases
This dataset tries to be unbiased towards its classes and labels.
### Other Known Limitations
The dataset is relatively small and should be used combined with larger datasets.
## Additional Information
### Dataset Curators
The dataset was initially created by [Intelligent Systems Lab](https://intelligence.csd.auth.gr).
### Licensing Information
The licensing status of the datasets is [GNU GPLv3](https://choosealicense.com/licenses/gpl-3.0/).
### Citation Information
```
@misc{mollas2020ethos,
title={ETHOS: an Online Hate Speech Detection Dataset},
author={Ioannis Mollas and Zoe Chrysopoulou and Stamatis Karlos and Grigorios Tsoumakas},
year={2020},
eprint={2006.08328},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
### Contributions
Thanks to [@iamollas](https://github.com/iamollas) for adding this dataset. |