Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
Chinese
Size:
1K<n<10K
License:
# coding=utf-8 | |
# Copyright 2020 HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
import datasets | |
_DESCRIPTION = """\ | |
Tags: PER(人名), LOC(地点名), GPE(行政区名), ORG(机构名) | |
Label Tag Meaning | |
PER PER.NAM 名字(张三) | |
PER.NOM 代称、类别名(穷人) | |
LOC LOC.NAM 特指名称(紫玉山庄) | |
LOC.NOM 泛称(大峡谷、宾馆) | |
GPE GPE.NAM 行政区的名称(北京) | |
ORG ORG.NAM 特定机构名称(通惠医院) | |
ORG.NOM 泛指名称、统称(文艺公司) | |
""" | |
_HOMEPAGE_URL = "https://github.com/OYE93/Chinese-NLP-Corpus/tree/master/NER/Weibo" | |
_CITATION = None | |
_TRAIN_URL = "https://raw.githubusercontent.com/OYE93/Chinese-NLP-Corpus/master/NER/Weibo/weiboNER_2nd_conll.train" | |
_TEST_URL = "https://raw.githubusercontent.com/OYE93/Chinese-NLP-Corpus/master/NER/Weibo/weiboNER_2nd_conll.test" | |
_VALID_URL = "https://raw.githubusercontent.com/OYE93/Chinese-NLP-Corpus/master/NER/Weibo/weiboNER_2nd_conll.dev" | |
class WeiboNERCorpus(datasets.GeneratorBasedBuilder): | |
VERSION = datasets.Version("1.0.0") | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"tokens": datasets.Sequence(datasets.Value("string")), | |
"ner_tags": datasets.Sequence( | |
datasets.features.ClassLabel( | |
names=[ | |
"B-GPE.NAM", | |
"B-GPE.NOM", | |
"B-LOC.NAM", | |
"B-LOC.NOM", | |
"B-ORG.NAM", | |
"B-ORG.NOM", | |
"B-PER.NAM", | |
"B-PER.NOM", | |
"I-GPE.NAM", | |
"I-GPE.NOM", | |
"I-LOC.NAM", | |
"I-LOC.NOM", | |
"I-ORG.NAM", | |
"I-ORG.NOM", | |
"I-PER.NAM", | |
"I-PER.NOM", | |
"O", | |
] | |
) | |
), | |
}, | |
), | |
supervised_keys=None, | |
homepage=_HOMEPAGE_URL, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
train_path = dl_manager.download_and_extract(_TRAIN_URL) | |
valid_path = dl_manager.download_and_extract(_VALID_URL) | |
test_path = dl_manager.download_and_extract(_TEST_URL) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"data_path": train_path}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={"data_path": valid_path}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"data_path": test_path}, | |
), | |
] | |
def _generate_examples(self, data_path): | |
sentence_counter = 0 | |
with open(data_path, encoding="utf-8") as f: | |
current_words = [] | |
current_labels = [] | |
for row in f: | |
row = row.rstrip() | |
row_split = row.split("\t") | |
if len(row_split) == 2: | |
token, label = row_split | |
current_words.append(token) | |
current_labels.append(label) | |
else: | |
if not current_words: | |
continue | |
assert len(current_words) == len(current_labels), "word len doesnt match label length" | |
sentence = ( | |
sentence_counter, | |
{ | |
"id": str(sentence_counter), | |
"tokens": current_words, | |
"ner_tags": current_labels, | |
}, | |
) | |
sentence_counter += 1 | |
current_words = [] | |
current_labels = [] | |
yield sentence | |
# if something remains: | |
if current_words: | |
sentence = ( | |
sentence_counter, | |
{ | |
"id": str(sentence_counter), | |
"tokens": current_words, | |
"ner_tags": current_labels, | |
}, | |
) | |
yield sentence | |