|
import csv |
|
import datasets |
|
from datasets.tasks import TextClassification |
|
|
|
|
|
_DESCRIPTION = """\ |
|
Sentiment analysis dataset extracted and labeled from Digikala and Snapp Food comments |
|
""" |
|
|
|
_DOWNLOAD_URLS = { |
|
|
|
"train": "https://huggingface.co/datasets/hezarai/sentiment-dksf/raw/main/sentiment_dksf_train.csv", |
|
"test": "https://huggingface.co/datasets/hezarai/sentiment-dksf/raw/main/sentiment_dksf_test.csv" |
|
} |
|
|
|
|
|
class SentimentDKSF(datasets.GeneratorBasedBuilder): |
|
"""Sentiment analysis on Digikala/SnappFood comments""" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{"text": datasets.Value("string"), "label": datasets.features.ClassLabel(names=["negative", "positive", "neutral"])} |
|
), |
|
supervised_keys=None, |
|
homepage="https://huggingface.co/datasets/hezar-ai/sentiment-dksf", |
|
task_templates=[TextClassification(text_column="text", label_column="label")], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
train_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["train"]) |
|
test_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["test"]) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Generate examples.""" |
|
label_mapping = {"negative": 0, "positive": 1, "neutral": 2} |
|
with open(filepath, encoding="utf-8") as csv_file: |
|
csv_reader = csv.reader( |
|
csv_file, quotechar='"', skipinitialspace=True |
|
) |
|
for id_, row in enumerate(csv_reader): |
|
text, label = row |
|
label = label_mapping[label] |
|
yield id_, {"text": text, "label": label} |
|
|