"""TODO(empathetic_dialogues): Add a description here.""" import csv import os import datasets _CITATION = """\ @inproceedings{rashkin2019towards, title = {Towards Empathetic Open-domain Conversation Models: a New Benchmark and Dataset}, author = {Hannah Rashkin and Eric Michael Smith and Margaret Li and Y-Lan Boureau}, booktitle = {ACL}, year = {2019}, } """ _DESCRIPTION = """\ PyTorch original implementation of Towards Empathetic Open-domain Conversation Models: a New Benchmark and Dataset """ _URL = "https://dl.fbaipublicfiles.com/parlai/empatheticdialogues/empatheticdialogues.tar.gz" class EmpatheticDialogues(datasets.GeneratorBasedBuilder): """TODO(empathetic_dialogues): Short description of my dataset.""" # TODO(empathetic_dialogues): Set up version. VERSION = datasets.Version("0.1.0") def _info(self): # TODO(empathetic_dialogues): Specifies the datasets.DatasetInfo object return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # datasets.features.FeatureConnectors features=datasets.Features( { "conv_id": datasets.Value("string"), "utterance_idx": datasets.Value("int32"), "context": datasets.Value("string"), "prompt": datasets.Value("string"), "speaker_idx": datasets.Value("int32"), "utterance": datasets.Value("string"), "selfeval": datasets.Value("string"), "tags": datasets.Value("string") # These are the features of your dataset like images, labels ... } ), # If there's a common (input, target) tuple from the features, # specify them here. They'll be used if as_supervised=True in # builder.as_dataset. supervised_keys=None, # Homepage of the dataset for documentation homepage="https://github.com/facebookresearch/EmpatheticDialogues", citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" # TODO(empathetic_dialogues): Downloads the data and defines the splits # dl_manager is a datasets.download.DownloadManager that can be used to # download and extract URLs dl_dir = dl_manager.download_and_extract(_URL) data_dir = os.path.join(dl_dir, "empatheticdialogues") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={"filepath": os.path.join(data_dir, "train.csv")}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={"filepath": os.path.join(data_dir, "valid.csv")}, ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={"filepath": os.path.join(data_dir, "test.csv")}, ), ] def _generate_examples(self, filepath): """Yields examples.""" # TODO(empathetic_dialogues): Yields (key, example) tuples from the dataset with open(filepath, encoding="utf-8") as f: data = csv.DictReader(f) for id_, row in enumerate(data): utterance = row["utterance"] speaker_id = int(row["speaker_idx"]) context = row["context"] conv_id = row["conv_id"] tags = row["tags"] if row["tags"] else "" selfeval = row["selfeval"] if row["selfeval"] else "" utterance_id = int(row["utterance_idx"]) prompt = row["prompt"] yield id_, { "utterance": utterance, "utterance_idx": utterance_id, "context": context, "speaker_idx": speaker_id, "conv_id": conv_id, "selfeval": selfeval, "prompt": prompt, "tags": tags, }