File size: 4,402 Bytes
e8e2129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
"""TODO(empathetic_dialogues): Add a description here."""


import csv
import os

import datasets


_CITATION = """\
@inproceedings{rashkin2019towards,
  title = {Towards Empathetic Open-domain Conversation Models: a New Benchmark and Dataset},
  author = {Hannah Rashkin and Eric Michael Smith and Margaret Li and Y-Lan Boureau},
  booktitle = {ACL},
  year = {2019},
}
"""

_DESCRIPTION = """\
PyTorch original implementation of Towards Empathetic Open-domain Conversation Models: a New Benchmark and Dataset
"""
_URL = "https://dl.fbaipublicfiles.com/parlai/empatheticdialogues/empatheticdialogues.tar.gz"


class EmpatheticDialogues(datasets.GeneratorBasedBuilder):
    """TODO(empathetic_dialogues): Short description of my dataset."""

    # TODO(empathetic_dialogues): Set up version.
    VERSION = datasets.Version("0.1.0")

    def _info(self):
        # TODO(empathetic_dialogues): Specifies the datasets.DatasetInfo object
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # datasets.features.FeatureConnectors
            features=datasets.Features(
                {
                    "conv_id": datasets.Value("string"),
                    "utterance_idx": datasets.Value("int32"),
                    "context": datasets.Value("string"),
                    "prompt": datasets.Value("string"),
                    "speaker_idx": datasets.Value("int32"),
                    "utterance": datasets.Value("string"),
                    "selfeval": datasets.Value("string"),
                    "tags": datasets.Value("string")
                    # These are the features of your dataset like images, labels ...
                }
            ),
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage="https://github.com/facebookresearch/EmpatheticDialogues",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        # TODO(empathetic_dialogues): Downloads the data and defines the splits
        # dl_manager is a datasets.download.DownloadManager that can be used to
        # download and extract URLs
        dl_dir = dl_manager.download_and_extract(_URL)
        data_dir = os.path.join(dl_dir, "empatheticdialogues")
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"filepath": os.path.join(data_dir, "train.csv")},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"filepath": os.path.join(data_dir, "valid.csv")},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"filepath": os.path.join(data_dir, "test.csv")},
            ),
        ]

    def _generate_examples(self, filepath):
        """Yields examples."""
        # TODO(empathetic_dialogues): Yields (key, example) tuples from the dataset
        with open(filepath, encoding="utf-8") as f:
            data = csv.DictReader(f)
            for id_, row in enumerate(data):
                utterance = row["utterance"]
                speaker_id = int(row["speaker_idx"])
                context = row["context"]
                conv_id = row["conv_id"]
                tags = row["tags"] if row["tags"] else ""
                selfeval = row["selfeval"] if row["selfeval"] else ""
                utterance_id = int(row["utterance_idx"])
                prompt = row["prompt"]
                yield id_, {
                    "utterance": utterance,
                    "utterance_idx": utterance_id,
                    "context": context,
                    "speaker_idx": speaker_id,
                    "conv_id": conv_id,
                    "selfeval": selfeval,
                    "prompt": prompt,
                    "tags": tags,
                }