Fix evaluation set image features url
Browse files- gqa-lxmert.py +11 -13
gqa-lxmert.py
CHANGED
@@ -44,21 +44,19 @@ seeking to address key shortcomings of previous visual question answering (VQA)
|
|
44 |
|
45 |
_URLS = {
|
46 |
"train": "https://nlp.cs.unc.edu/data/lxmert_data/gqa/train.json",
|
47 |
-
"train_feat": "https://nlp.cs.unc.edu/data/lxmert_data/vg_gqa_imgfeat/vg_gqa_obj36.zip",
|
48 |
"dev": "https://nlp.cs.unc.edu/data/lxmert_data/gqa/valid.json",
|
49 |
-
"
|
50 |
"ans2label": "https://raw.githubusercontent.com/airsplay/lxmert/master/data/gqa/trainval_ans2label.json",
|
51 |
}
|
52 |
|
53 |
-
|
54 |
-
_DEV_IMG_PATH = "vg_gqa_imgfeat/gqa_testdev_obj36.tsv"
|
55 |
|
56 |
FIELDNAMES = [
|
57 |
"img_id", "img_h", "img_w", "objects_id", "objects_conf", "attrs_id", "attrs_conf", "num_boxes", "boxes", "features"
|
58 |
]
|
59 |
|
60 |
-
|
61 |
-
|
62 |
|
63 |
|
64 |
class GqaLxmert(datasets.GeneratorBasedBuilder):
|
@@ -75,8 +73,8 @@ class GqaLxmert(datasets.GeneratorBasedBuilder):
|
|
75 |
"question": datasets.Value("string"),
|
76 |
"question_id": datasets.Value("int32"),
|
77 |
"image_id": datasets.Value("string"),
|
78 |
-
"features": datasets.Array2D(
|
79 |
-
"boxes": datasets.Array2D(
|
80 |
"label": datasets.Value("int32"),
|
81 |
}
|
82 |
)
|
@@ -91,15 +89,16 @@ class GqaLxmert(datasets.GeneratorBasedBuilder):
|
|
91 |
"""Returns SplitGenerators."""
|
92 |
dl_dir = dl_manager.download_and_extract(_URLS)
|
93 |
self.ans2label = json.load(open(dl_dir["ans2label"]))
|
|
|
94 |
|
95 |
return [
|
96 |
datasets.SplitGenerator(
|
97 |
name=datasets.Split.TRAIN,
|
98 |
-
gen_kwargs={"filepath": dl_dir["train"]
|
99 |
),
|
100 |
datasets.SplitGenerator(
|
101 |
name=datasets.Split.VALIDATION,
|
102 |
-
gen_kwargs={"filepath": dl_dir["dev"]
|
103 |
),
|
104 |
]
|
105 |
|
@@ -126,13 +125,12 @@ class GqaLxmert(datasets.GeneratorBasedBuilder):
|
|
126 |
id2features[item["img_id"]] = features
|
127 |
return id2features
|
128 |
|
129 |
-
def _generate_examples(self, filepath
|
130 |
""" Yields examples as (key, example) tuples."""
|
131 |
-
id2features = self._load_features(imgfeat)
|
132 |
with open(filepath, encoding="utf-8") as f:
|
133 |
gqa = json.load(f)
|
134 |
for id_, d in enumerate(gqa):
|
135 |
-
img_features = id2features[d["img_id"]]
|
136 |
label = self.ans2label[next(iter(d["label"]))]
|
137 |
yield id_, {
|
138 |
"question": d["sent"],
|
|
|
44 |
|
45 |
_URLS = {
|
46 |
"train": "https://nlp.cs.unc.edu/data/lxmert_data/gqa/train.json",
|
|
|
47 |
"dev": "https://nlp.cs.unc.edu/data/lxmert_data/gqa/valid.json",
|
48 |
+
"feat": "https://nlp.cs.unc.edu/data/lxmert_data/vg_gqa_imgfeat/vg_gqa_obj36.zip",
|
49 |
"ans2label": "https://raw.githubusercontent.com/airsplay/lxmert/master/data/gqa/trainval_ans2label.json",
|
50 |
}
|
51 |
|
52 |
+
_FEAT_PATH = "vg_gqa_imgfeat/vg_gqa_obj36.tsv"
|
|
|
53 |
|
54 |
FIELDNAMES = [
|
55 |
"img_id", "img_h", "img_w", "objects_id", "objects_conf", "attrs_id", "attrs_conf", "num_boxes", "boxes", "features"
|
56 |
]
|
57 |
|
58 |
+
_SHAPE_FEATURES = (36, 2048)
|
59 |
+
_SHAPE_BOXES = (36, 4)
|
60 |
|
61 |
|
62 |
class GqaLxmert(datasets.GeneratorBasedBuilder):
|
|
|
73 |
"question": datasets.Value("string"),
|
74 |
"question_id": datasets.Value("int32"),
|
75 |
"image_id": datasets.Value("string"),
|
76 |
+
"features": datasets.Array2D(_SHAPE_FEATURES, dtype="float32"),
|
77 |
+
"boxes": datasets.Array2D(_SHAPE_BOXES, dtype="float32"),
|
78 |
"label": datasets.Value("int32"),
|
79 |
}
|
80 |
)
|
|
|
89 |
"""Returns SplitGenerators."""
|
90 |
dl_dir = dl_manager.download_and_extract(_URLS)
|
91 |
self.ans2label = json.load(open(dl_dir["ans2label"]))
|
92 |
+
self.id2features = self._load_features(os.path.join(dl_dir["feat"], _FEAT_PATH))
|
93 |
|
94 |
return [
|
95 |
datasets.SplitGenerator(
|
96 |
name=datasets.Split.TRAIN,
|
97 |
+
gen_kwargs={"filepath": dl_dir["train"]},
|
98 |
),
|
99 |
datasets.SplitGenerator(
|
100 |
name=datasets.Split.VALIDATION,
|
101 |
+
gen_kwargs={"filepath": dl_dir["dev"]},
|
102 |
),
|
103 |
]
|
104 |
|
|
|
125 |
id2features[item["img_id"]] = features
|
126 |
return id2features
|
127 |
|
128 |
+
def _generate_examples(self, filepath):
|
129 |
""" Yields examples as (key, example) tuples."""
|
|
|
130 |
with open(filepath, encoding="utf-8") as f:
|
131 |
gqa = json.load(f)
|
132 |
for id_, d in enumerate(gqa):
|
133 |
+
img_features = self.id2features[d["img_id"]]
|
134 |
label = self.ans2label[next(iter(d["label"]))]
|
135 |
yield id_, {
|
136 |
"question": d["sent"],
|