Commit file to HF hub
Browse files- gqa-lxmert.py +144 -0
gqa-lxmert.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""The GQA dataset preprocessed for LXMERT."""
|
16 |
+
|
17 |
+
import base64
|
18 |
+
import csv
|
19 |
+
import json
|
20 |
+
import os
|
21 |
+
import sys
|
22 |
+
|
23 |
+
import datasets
|
24 |
+
import numpy as np
|
25 |
+
|
26 |
+
|
27 |
+
csv.field_size_limit(sys.maxsize)
|
28 |
+
|
29 |
+
|
30 |
+
_CITATION = """\
|
31 |
+
@inproceedings{hudson2019gqa,
|
32 |
+
title={Gqa: A new dataset for real-world visual reasoning and compositional question answering},
|
33 |
+
author={Hudson, Drew A and Manning, Christopher D},
|
34 |
+
booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
|
35 |
+
pages={6700--6709},
|
36 |
+
year={2019}
|
37 |
+
}
|
38 |
+
"""
|
39 |
+
|
40 |
+
_DESCRIPTION = """\
|
41 |
+
GQA is a new dataset for real-world visual reasoning and compositional question answering,
|
42 |
+
seeking to address key shortcomings of previous visual question answering (VQA) datasets.
|
43 |
+
"""
|
44 |
+
|
45 |
+
_URLS = {
|
46 |
+
"train": "https://nlp.cs.unc.edu/data/lxmert_data/gqa/train.json",
|
47 |
+
"train_feat": "https://nlp.cs.unc.edu/data/lxmert_data/vg_gqa_imgfeat/vg_gqa_obj36.zip",
|
48 |
+
"dev": "https://nlp.cs.unc.edu/data/lxmert_data/gqa/valid.json",
|
49 |
+
"dev_feat": "https://nlp.cs.unc.edu/data/lxmert_data/vg_gqa_imgfeat/gqa_testdev_obj36.zip",
|
50 |
+
"ans2label": "https://raw.githubusercontent.com/airsplay/lxmert/master/data/gqa/trainval_ans2label.json",
|
51 |
+
}
|
52 |
+
|
53 |
+
_TRAIN_IMG_PATH = "vg_gqa_obj36.tsv"
|
54 |
+
_DEV_IMG_PATH = "vg_gqa_imgfeat/gqa_testdev_obj36.tsv"
|
55 |
+
|
56 |
+
FIELDNAMES = [
|
57 |
+
"img_id", "img_h", "img_w", "objects_id", "objects_conf", "attrs_id", "attrs_conf", "num_boxes", "boxes", "features"
|
58 |
+
]
|
59 |
+
|
60 |
+
SHAPE_FEATURES = (36, 2048)
|
61 |
+
SHAPE_BOXES = (36, 4)
|
62 |
+
|
63 |
+
|
64 |
+
class GqaLxmert(datasets.GeneratorBasedBuilder):
|
65 |
+
"""The GQA dataset preprocessed for LXMERT, with the objects features detected by a Faster RCNN replacing the
|
66 |
+
raw images."""
|
67 |
+
|
68 |
+
BUILDER_CONFIGS = [
|
69 |
+
datasets.BuilderConfig(name="gqa", version=datasets.Version("1.0.0"), description="GQA dataset."),
|
70 |
+
]
|
71 |
+
|
72 |
+
def _info(self):
|
73 |
+
features = datasets.Features(
|
74 |
+
{
|
75 |
+
"question": datasets.Value("string"),
|
76 |
+
"question_id": datasets.Value("int32"),
|
77 |
+
"image_id": datasets.Value("string"),
|
78 |
+
"features": datasets.Array2D(SHAPE_FEATURES, dtype="float32"),
|
79 |
+
"boxes": datasets.Array2D(SHAPE_BOXES, dtype="float32"),
|
80 |
+
"label": datasets.Value("int32"),
|
81 |
+
}
|
82 |
+
)
|
83 |
+
return datasets.DatasetInfo(
|
84 |
+
description=_DESCRIPTION,
|
85 |
+
features=features,
|
86 |
+
supervised_keys=None,
|
87 |
+
citation=_CITATION,
|
88 |
+
)
|
89 |
+
|
90 |
+
def _split_generators(self, dl_manager):
|
91 |
+
"""Returns SplitGenerators."""
|
92 |
+
dl_dir = dl_manager.download_and_extract(_URLS)
|
93 |
+
self.ans2label = json.load(open(dl_dir["ans2label"]))
|
94 |
+
|
95 |
+
return [
|
96 |
+
datasets.SplitGenerator(
|
97 |
+
name=datasets.Split.TRAIN,
|
98 |
+
gen_kwargs={"filepath": dl_dir["train"], "imgfeat": os.path.join(dl_dir["train_feat"], _TRAIN_IMG_PATH)},
|
99 |
+
),
|
100 |
+
datasets.SplitGenerator(
|
101 |
+
name=datasets.Split.VALIDATION,
|
102 |
+
gen_kwargs={"filepath": dl_dir["dev"], "imgfeat": os.path.join(dl_dir["dev_feat"], _DEV_IMG_PATH)},
|
103 |
+
),
|
104 |
+
]
|
105 |
+
|
106 |
+
def _load_features(self, filepath):
|
107 |
+
"""Returns a dictionary mapping an image id to the corresponding image's objects features."""
|
108 |
+
id2features = {}
|
109 |
+
with open(filepath) as f:
|
110 |
+
reader = csv.DictReader(f, FIELDNAMES, delimiter="\t")
|
111 |
+
for i, item in enumerate(reader):
|
112 |
+
features = {}
|
113 |
+
for key in ["img_h", "img_w", "num_boxes"]:
|
114 |
+
features[key] = int(item[key])
|
115 |
+
num_boxes = features["num_boxes"]
|
116 |
+
decode_config = [
|
117 |
+
("objects_id", (num_boxes,), np.int64),
|
118 |
+
("objects_conf", (num_boxes,), np.float32),
|
119 |
+
("attrs_id", (num_boxes,), np.int64),
|
120 |
+
("attrs_conf", (num_boxes,), np.float32),
|
121 |
+
("boxes", (num_boxes, 4), np.float32),
|
122 |
+
("features", (num_boxes, -1), np.float32),
|
123 |
+
]
|
124 |
+
for key, shape, dtype in decode_config:
|
125 |
+
features[key] = np.frombuffer(base64.b64decode(item[key]), dtype=dtype).reshape(shape)
|
126 |
+
id2features[item["img_id"]] = features
|
127 |
+
return id2features
|
128 |
+
|
129 |
+
def _generate_examples(self, filepath, imgfeat):
|
130 |
+
""" Yields examples as (key, example) tuples."""
|
131 |
+
id2features = self._load_features(imgfeat)
|
132 |
+
with open(filepath, encoding="utf-8") as f:
|
133 |
+
gqa = json.load(f)
|
134 |
+
for id_, d in enumerate(gqa):
|
135 |
+
img_features = id2features[d["img_id"]]
|
136 |
+
label = self.ans2label[next(iter(d["label"]))]
|
137 |
+
yield id_, {
|
138 |
+
"question": d["sent"],
|
139 |
+
"question_id": d["question_id"],
|
140 |
+
"image_id": d["img_id"],
|
141 |
+
"features": img_features["features"],
|
142 |
+
"boxes": img_features["boxes"],
|
143 |
+
"label": label,
|
144 |
+
}
|