|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Dynabench.DynaSent""" |
|
from __future__ import absolute_import, division, print_function |
|
import json |
|
import os |
|
from collections import OrderedDict |
|
import datasets |
|
logger = datasets.logging.get_logger(__name__) |
|
_VERSION = datasets.Version("1.1.0") |
|
_NUM_ROUNDS = 2 |
|
_DESCRIPTION = """\ |
|
Dynabench.DynaSent is a Sentiment Analysis dataset collected using a |
|
human-and-model-in-the-loop. |
|
""".strip() |
|
|
|
|
|
class DynabenchRoundDetails: |
|
"""Round details for Dynabench.DynaSent datasets.""" |
|
def __init__( |
|
self, citation, description, homepage, data_license, data_url, |
|
data_features, data_subset_map=None |
|
): |
|
self.citation = citation |
|
self.description = description |
|
self.homepage = homepage |
|
self.data_license = data_license |
|
self.data_url = data_url |
|
self.data_features = data_features |
|
self.data_subset_map = data_subset_map |
|
|
|
_ROUND_DETAILS = { |
|
1: DynabenchRoundDetails( |
|
citation="""\ |
|
@article{ |
|
potts-etal-2020-dynasent, |
|
title={{DynaSent}: A Dynamic Benchmark for Sentiment Analysis}, |
|
author={Potts, Christopher and Wu, Zhengxuan and Geiger, Atticus |
|
and Kiela, Douwe}, |
|
journal={arXiv preprint arXiv:2012.15349}, |
|
url={https://arxiv.org/abs/2012.15349}, |
|
year={2020} |
|
} |
|
""".strip(), |
|
description="""\ |
|
DynaSent is an English-language benchmark task for ternary |
|
(positive/negative/neutral) sentiment analysis. |
|
For more details on the dataset construction process, |
|
see https://github.com/cgpotts/dynasent. |
|
""".strip(), |
|
homepage="https://dynabench.org/tasks/3", |
|
data_license="CC BY 4.0", |
|
data_url="https://github.com/cgpotts/dynasent/raw/main/dynasent-v1.1.zip", |
|
data_features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"hit_ids": datasets.features.Sequence( |
|
datasets.Value("string") |
|
), |
|
"sentence": datasets.Value("string"), |
|
"indices_into_review_text": datasets.features.Sequence( |
|
datasets.Value("int32") |
|
), |
|
"model_0_label": datasets.Value("string"), |
|
"model_0_probs": { |
|
"negative": datasets.Value("float32"), |
|
"positive": datasets.Value("float32"), |
|
"neutral": datasets.Value("float32") |
|
}, |
|
"text_id": datasets.Value("string"), |
|
"review_id": datasets.Value("string"), |
|
"review_rating": datasets.Value("int32"), |
|
"label_distribution": { |
|
"positive": datasets.features.Sequence( |
|
datasets.Value("string") |
|
), |
|
"negative": datasets.features.Sequence( |
|
datasets.Value("string") |
|
), |
|
"neutral": datasets.features.Sequence( |
|
datasets.Value("string") |
|
), |
|
"mixed": datasets.features.Sequence( |
|
datasets.Value("string") |
|
) |
|
}, |
|
"gold_label": datasets.Value("string"), |
|
"metadata": { |
|
"split": datasets.Value("string"), |
|
"round": datasets.Value("int32"), |
|
"subset": datasets.Value("string"), |
|
"model_in_the_loop": datasets.Value("string"), |
|
} |
|
} |
|
), |
|
data_subset_map=OrderedDict({ |
|
"all": { |
|
"dir": "dynasent-v1.1", |
|
"file_prefix": "dynasent-v1.1-round01-yelp-", |
|
"model": "RoBERTa" |
|
} |
|
}), |
|
), |
|
2: DynabenchRoundDetails( |
|
citation="""\ |
|
@article{ |
|
potts-etal-2020-dynasent, |
|
title={{DynaSent}: A Dynamic Benchmark for Sentiment Analysis}, |
|
author={Potts, Christopher and Wu, Zhengxuan and Geiger, Atticus |
|
and Kiela, Douwe}, |
|
journal={arXiv preprint arXiv:2012.15349}, |
|
url={https://arxiv.org/abs/2012.15349}, |
|
year={2020} |
|
} |
|
""".strip(), |
|
description="""\ |
|
DynaSent is an English-language benchmark task for ternary |
|
(positive/negative/neutral) sentiment analysis. |
|
For more details on the dataset construction process, |
|
see https://github.com/cgpotts/dynasent. |
|
""".strip(), |
|
homepage="https://dynabench.org/tasks/3", |
|
data_license="CC BY 4.0", |
|
data_url="https://github.com/cgpotts/dynasent/raw/main/dynasent-v1.1.zip", |
|
data_features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"hit_ids": datasets.features.Sequence( |
|
datasets.Value("string") |
|
), |
|
"sentence": datasets.Value("string"), |
|
"sentence_author": datasets.Value("string"), |
|
"has_prompt": datasets.Value("bool"), |
|
"prompt_data": { |
|
"indices_into_review_text": datasets.features.Sequence( |
|
datasets.Value("int32") |
|
), |
|
"review_rating": datasets.Value("int32"), |
|
"prompt_sentence": datasets.Value("string"), |
|
"review_id": datasets.Value("string") |
|
}, |
|
"model_1_label": datasets.Value("string"), |
|
"model_1_probs": { |
|
"negative": datasets.Value("float32"), |
|
"positive": datasets.Value("float32"), |
|
"neutral": datasets.Value("float32") |
|
}, |
|
"text_id": datasets.Value("string"), |
|
"label_distribution": { |
|
"positive": datasets.features.Sequence( |
|
datasets.Value("string") |
|
), |
|
"negative": datasets.features.Sequence( |
|
datasets.Value("string") |
|
), |
|
"neutral": datasets.features.Sequence( |
|
datasets.Value("string") |
|
), |
|
"mixed": datasets.features.Sequence( |
|
datasets.Value("string") |
|
) |
|
}, |
|
"gold_label": datasets.Value("string"), |
|
"metadata": { |
|
"split": datasets.Value("string"), |
|
"round": datasets.Value("int32"), |
|
"subset": datasets.Value("string"), |
|
"model_in_the_loop": datasets.Value("string"), |
|
} |
|
} |
|
), |
|
data_subset_map=OrderedDict({ |
|
"all": { |
|
"dir": "dynasent-v1.1", |
|
"file_prefix": "dynasent-v1.1-round02-dynabench-", |
|
"model": "RoBERTa" |
|
} |
|
}), |
|
) |
|
} |
|
|
|
|
|
class DynabenchDynaSentConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Dynabench.DynaSent datasets.""" |
|
def __init__(self, round, subset='all', **kwargs): |
|
"""BuilderConfig for Dynabench.DynaSent. |
|
Args: |
|
round: integer, the dynabench round to load. |
|
subset: string, the subset of that round's data to load or 'all'. |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
assert isinstance(round, int), "round ({}) must be set and of type integer".format(round) |
|
assert 0 < round <= _NUM_ROUNDS, \ |
|
"round (received {}) must be between 1 and {}".format(round, _NUM_ROUNDS) |
|
super(DynabenchDynaSentConfig, self).__init__( |
|
name="dynabench.dynasent.r{}.{}".format(round, subset), |
|
description="Dynabench DynaSent dataset for round {}, showing dataset selection: {}.".format(round, subset), |
|
**kwargs, |
|
) |
|
self.round = round |
|
self.subset = subset |
|
|
|
|
|
class DynabenchDynaSent(datasets.GeneratorBasedBuilder): |
|
"""Dynabench.DynaSent""" |
|
BUILDER_CONFIG_CLASS = DynabenchDynaSentConfig |
|
BUILDER_CONFIGS = [ |
|
DynabenchDynaSentConfig( |
|
version=_VERSION, |
|
round=round, |
|
subset=subset, |
|
) |
|
for round in range(1, _NUM_ROUNDS+1) for subset in _ROUND_DETAILS[round].data_subset_map |
|
] |
|
|
|
def _info(self): |
|
round_details = _ROUND_DETAILS[self.config.round] |
|
return datasets.DatasetInfo( |
|
description=round_details.description, |
|
features=round_details.data_features, |
|
homepage=round_details.homepage, |
|
citation=round_details.citation, |
|
supervised_keys=None |
|
) |
|
|
|
@staticmethod |
|
def _get_filepath(dl_dir, round, subset, split): |
|
round_details = _ROUND_DETAILS[round] |
|
return os.path.join( |
|
dl_dir, |
|
round_details.data_subset_map[subset]["dir"], |
|
round_details.data_subset_map[subset]["file_prefix"] + split + ".jsonl" |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
round_details = _ROUND_DETAILS[self.config.round] |
|
dl_dir = dl_manager.download_and_extract(round_details.data_url) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": self._get_filepath( |
|
dl_dir, self.config.round, self.config.subset, "train" |
|
), |
|
"split": "train", |
|
"round": self.config.round, |
|
"subset": self.config.subset, |
|
"model_in_the_loop": round_details.data_subset_map[self.config.subset]["model"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": self._get_filepath( |
|
dl_dir, self.config.round, self.config.subset, "dev" |
|
), |
|
"split": "validation", |
|
"round": self.config.round, |
|
"subset": self.config.subset, |
|
"model_in_the_loop": round_details.data_subset_map[self.config.subset]["model"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": self._get_filepath( |
|
dl_dir, self.config.round, self.config.subset, "test" |
|
), |
|
"split": "test", |
|
"round": self.config.round, |
|
"subset": self.config.subset, |
|
"model_in_the_loop": round_details.data_subset_map[self.config.subset]["model"], |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split, round, subset, model_in_the_loop): |
|
"""This function returns the examples in the raw (text) form.""" |
|
ternary_labels = ('positive', 'negative', 'neutral') |
|
logger.info("generating examples from = %s", filepath) |
|
with open(filepath, encoding="utf-8") as f: |
|
for line in f: |
|
d = json.loads(line) |
|
if d['gold_label'] in ternary_labels: |
|
if round == 1: |
|
|
|
yield d["text_id"], { |
|
"id": d["text_id"], |
|
|
|
"hit_ids": d["hit_ids"], |
|
"sentence": d["sentence"], |
|
"indices_into_review_text": d["indices_into_review_text"], |
|
"model_0_label": d["model_0_label"], |
|
"model_0_probs": d["model_0_probs"], |
|
"text_id": d["text_id"], |
|
"review_id": d["review_id"], |
|
"review_rating": d["review_rating"], |
|
"label_distribution": d["label_distribution"], |
|
"gold_label": d["gold_label"], |
|
|
|
"metadata": { |
|
"split": split, |
|
"round": round, |
|
"subset": subset, |
|
"model_in_the_loop": model_in_the_loop |
|
} |
|
} |
|
elif round == 2: |
|
|
|
if d["has_prompt"]: |
|
if "indices_into_review_text" in d["prompt_data"]: |
|
indices_into_review_text = d["prompt_data"]["indices_into_review_text"] |
|
else: |
|
indices_into_review_text = [] |
|
if "review_rating" in d["prompt_data"]: |
|
review_rating = d["prompt_data"]["review_rating"] |
|
else: |
|
review_rating = -1 |
|
if "review_id" in d["prompt_data"]: |
|
review_id = d["prompt_data"]["review_id"] |
|
else: |
|
review_id = "" |
|
if "prompt_sentence" in d["prompt_data"]: |
|
prompt_sentence = d["prompt_data"]["prompt_sentence"] |
|
else: |
|
prompt_sentence = "" |
|
prompt_data = { |
|
"indices_into_review_text": indices_into_review_text, |
|
"review_rating": review_rating, |
|
"prompt_sentence": prompt_sentence, |
|
"review_id": review_id, |
|
} |
|
else: |
|
prompt_data = { |
|
"indices_into_review_text": [], |
|
"review_rating": -1, |
|
"prompt_sentence": "", |
|
"review_id": "", |
|
} |
|
yield d["text_id"], { |
|
"id": d["text_id"], |
|
|
|
"hit_ids": d["hit_ids"], |
|
"sentence": d["sentence"], |
|
"sentence_author": d["sentence_author"], |
|
"has_prompt": d["has_prompt"], |
|
"prompt_data": prompt_data, |
|
"model_1_label": d["model_1_label"], |
|
"model_1_probs": d["model_1_probs"], |
|
"text_id": d["text_id"], |
|
"label_distribution": d["label_distribution"], |
|
"gold_label": d["gold_label"], |
|
|
|
"metadata": { |
|
"split": split, |
|
"round": round, |
|
"subset": subset, |
|
"model_in_the_loop": model_in_the_loop |
|
} |
|
} |