Datasets:
File size: 1,342 Bytes
2e4b51d 901772c 2e4b51d 901772c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
license: cc-by-nc-sa-4.0
task_categories: ["automatic-speech-recognition", "text-to-speech"]
language: ["vi"]
pretty_name: FPT Open Speech Dataset (FOSD)
size_categories: ["10K<n<100K"]
dataset_info:
features:
- name: audio
dtype: audio
- name: transcription
dtype: string
splits:
- name: train
num_bytes: 684961355.008
num_examples: 25917
download_size: 819140462
dataset_size: 684961355.008
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# unofficial mirror of FPT Open Speech Dataset (FOSD)
released publicly in 2018 by FPT Corporation
100h, 26k samples
official link (dead): https://fpt.ai/fpt-open-speech-data/
mirror: https://data.mendeley.com/datasets/k9sxg2twv4/4
DOI: `10.17632/k9sxg2twv4.4`
pre-process:
- remove non-sense strings: `-N` `\r\n`
- remove 4 files because missing transcription:
- `Set001_V0.1_008210.mp3`
- `Set001_V0.1_010753.mp3`
- `Set001_V0.1_011477.mp3`
- `Set001_V0.1_011841.mp3`
usage with HuggingFace:
```python
# pip install -q "datasets[audio]"
from datasets import load_dataset
from torch.utils.data import DataLoader
dataset = load_dataset("doof-ferb/fpt_fosd", split="train", streaming=True)
dataset.set_format(type="torch", columns=["audio", "transcription"])
dataloader = DataLoader(dataset, batch_size=4)
``` |