--- language: - en dataset_info: features: - name: passages struct: - name: is_selected sequence: int32 - name: passage_text sequence: string - name: url sequence: string - name: query dtype: string - name: query_id dtype: int32 - name: query_type dtype: string - name: golden_passages sequence: string - name: answer dtype: string splits: - name: train num_bytes: 326842258 num_examples: 70616 download_size: 168328467 dataset_size: 326842258 configs: - config_name: default data_files: - split: train path: data/train-* --- This dataset was created by filtering and adding columns needed to evaluate retrievers to "v1.1" version of [MSMARCO dataset] (https://github.com/microsoft/MSMARCO-Question-Answering). I am additionally providing the code used to filter the dataset in order to make everything clear. ``` msmarco = load_dataset("ms_marco", "v1.1", split="train").to_pandas() msmarco["golden_passages"] = [row["passages"]["passage_text"][row["passages"]["is_selected"]==1] for _, row in msmarco.iterrows()] msmarco_correct_answers = msmarco[msmarco["answers"].apply(lambda x: len(x) == 1)] msmarco_correct_answers = msmarco_correct_answers[msmarco_correct_answers["wellFormedAnswers"].apply(lambda x: len(x) == 0)] msmarco_correct_answers.dropna(inplace=True) msmarco_correct_answers["answer"] = msmarco_correct_answers["answers"].apply(lambda x: x[0]) msmarco_correct_answers.drop(["wellFormedAnswers", "answers"], axis=1, inplace=True) msmarco_correct_answers.reset_index(inplace=True, drop=True) ```