Datasets:

ArXiv:
Wauplin HF staff commited on
Commit
6393bc9
1 Parent(s): 03c4a26

Revert incorrect commit

Browse files

See in [Github action](https://github.com/huggingface/diffusers/actions/runs/9489094498/job/26149588467), the `PATH_IN_REPO` has been incorrectly evaluated, resulting in community pipelines files been uploaded at the root of the folder. This PR fixes this by deleting them.

In parallel, I opened [#8519](https://github.com/huggingface/diffusers/pull/8519) to prevent this in the future.

Files changed (1) hide show
  1. README_community_scripts.md +0 -232
README_community_scripts.md DELETED
@@ -1,232 +0,0 @@
1
- # Community Scripts
2
-
3
- **Community scripts** consist of inference examples using Diffusers pipelines that have been added by the community.
4
- Please have a look at the following table to get an overview of all community examples. Click on the **Code Example** to get a copy-and-paste code example that you can try out.
5
- If a community script doesn't work as expected, please open an issue and ping the author on it.
6
-
7
- | Example | Description | Code Example | Colab | Author |
8
- |:--------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------:|
9
- | Using IP-Adapter with negative noise | Using negative noise with IP-adapter to better control the generation (see the [original post](https://github.com/huggingface/diffusers/discussions/7167) on the forum for more details) | [IP-Adapter Negative Noise](#ip-adapter-negative-noise) | | [Álvaro Somoza](https://github.com/asomoza)|
10
- | asymmetric tiling |configure seamless image tiling independently for the X and Y axes | [Asymmetric Tiling](#asymmetric-tiling ) | | [alexisrolland](https://github.com/alexisrolland)|
11
-
12
-
13
- ## Example usages
14
-
15
- ### IP Adapter Negative Noise
16
-
17
- Diffusers pipelines are fully integrated with IP-Adapter, which allows you to prompt the diffusion model with an image. However, it does not support negative image prompts (there is no `negative_ip_adapter_image` argument) the same way it supports negative text prompts. When you pass an `ip_adapter_image,` it will create a zero-filled tensor as a negative image. This script shows you how to create a negative noise from `ip_adapter_image` and use it to significantly improve the generation quality while preserving the composition of images.
18
-
19
- [cubiq](https://github.com/cubiq) initially developed this feature in his [repository](https://github.com/cubiq/ComfyUI_IPAdapter_plus). The community script was contributed by [asomoza](https://github.com/Somoza). You can find more details about this experimentation [this discussion](https://github.com/huggingface/diffusers/discussions/7167)
20
-
21
- IP-Adapter without negative noise
22
- |source|result|
23
- |---|---|
24
- |![20240229150812](https://github.com/huggingface/diffusers/assets/5442875/901d8bd8-7a59-4fe7-bda1-a0e0d6c7dffd)|![20240229163923_normal](https://github.com/huggingface/diffusers/assets/5442875/3432e25a-ece6-45f4-a3f4-fca354f40b5b)|
25
-
26
- IP-Adapter with negative noise
27
- |source|result|
28
- |---|---|
29
- |![20240229150812](https://github.com/huggingface/diffusers/assets/5442875/901d8bd8-7a59-4fe7-bda1-a0e0d6c7dffd)|![20240229163923](https://github.com/huggingface/diffusers/assets/5442875/736fd15a-36ba-40c0-a7d8-6ec1ac26f788)|
30
-
31
- ```python
32
- import torch
33
-
34
- from diffusers import AutoencoderKL, DPMSolverMultistepScheduler, StableDiffusionXLPipeline
35
- from diffusers.models import ImageProjection
36
- from diffusers.utils import load_image
37
-
38
-
39
- def encode_image(
40
- image_encoder,
41
- feature_extractor,
42
- image,
43
- device,
44
- num_images_per_prompt,
45
- output_hidden_states=None,
46
- negative_image=None,
47
- ):
48
- dtype = next(image_encoder.parameters()).dtype
49
-
50
- if not isinstance(image, torch.Tensor):
51
- image = feature_extractor(image, return_tensors="pt").pixel_values
52
-
53
- image = image.to(device=device, dtype=dtype)
54
- if output_hidden_states:
55
- image_enc_hidden_states = image_encoder(image, output_hidden_states=True).hidden_states[-2]
56
- image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
57
-
58
- if negative_image is None:
59
- uncond_image_enc_hidden_states = image_encoder(
60
- torch.zeros_like(image), output_hidden_states=True
61
- ).hidden_states[-2]
62
- else:
63
- if not isinstance(negative_image, torch.Tensor):
64
- negative_image = feature_extractor(negative_image, return_tensors="pt").pixel_values
65
- negative_image = negative_image.to(device=device, dtype=dtype)
66
- uncond_image_enc_hidden_states = image_encoder(negative_image, output_hidden_states=True).hidden_states[-2]
67
-
68
- uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
69
- return image_enc_hidden_states, uncond_image_enc_hidden_states
70
- else:
71
- image_embeds = image_encoder(image).image_embeds
72
- image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
73
- uncond_image_embeds = torch.zeros_like(image_embeds)
74
-
75
- return image_embeds, uncond_image_embeds
76
-
77
-
78
- @torch.no_grad()
79
- def prepare_ip_adapter_image_embeds(
80
- unet,
81
- image_encoder,
82
- feature_extractor,
83
- ip_adapter_image,
84
- do_classifier_free_guidance,
85
- device,
86
- num_images_per_prompt,
87
- ip_adapter_negative_image=None,
88
- ):
89
- if not isinstance(ip_adapter_image, list):
90
- ip_adapter_image = [ip_adapter_image]
91
-
92
- if len(ip_adapter_image) != len(unet.encoder_hid_proj.image_projection_layers):
93
- raise ValueError(
94
- f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
95
- )
96
-
97
- image_embeds = []
98
- for single_ip_adapter_image, image_proj_layer in zip(
99
- ip_adapter_image, unet.encoder_hid_proj.image_projection_layers
100
- ):
101
- output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
102
- single_image_embeds, single_negative_image_embeds = encode_image(
103
- image_encoder,
104
- feature_extractor,
105
- single_ip_adapter_image,
106
- device,
107
- 1,
108
- output_hidden_state,
109
- negative_image=ip_adapter_negative_image,
110
- )
111
- single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
112
- single_negative_image_embeds = torch.stack([single_negative_image_embeds] * num_images_per_prompt, dim=0)
113
-
114
- if do_classifier_free_guidance:
115
- single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
116
- single_image_embeds = single_image_embeds.to(device)
117
-
118
- image_embeds.append(single_image_embeds)
119
-
120
- return image_embeds
121
-
122
-
123
- vae = AutoencoderKL.from_pretrained(
124
- "madebyollin/sdxl-vae-fp16-fix",
125
- torch_dtype=torch.float16,
126
- ).to("cuda")
127
-
128
- pipeline = StableDiffusionXLPipeline.from_pretrained(
129
- "RunDiffusion/Juggernaut-XL-v9",
130
- torch_dtype=torch.float16,
131
- vae=vae,
132
- variant="fp16",
133
- ).to("cuda")
134
-
135
- pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
136
- pipeline.scheduler.config.use_karras_sigmas = True
137
-
138
- pipeline.load_ip_adapter(
139
- "h94/IP-Adapter",
140
- subfolder="sdxl_models",
141
- weight_name="ip-adapter-plus_sdxl_vit-h.safetensors",
142
- image_encoder_folder="models/image_encoder",
143
- )
144
- pipeline.set_ip_adapter_scale(0.7)
145
-
146
- ip_image = load_image("source.png")
147
- negative_ip_image = load_image("noise.png")
148
-
149
- image_embeds = prepare_ip_adapter_image_embeds(
150
- unet=pipeline.unet,
151
- image_encoder=pipeline.image_encoder,
152
- feature_extractor=pipeline.feature_extractor,
153
- ip_adapter_image=[[ip_image]],
154
- do_classifier_free_guidance=True,
155
- device="cuda",
156
- num_images_per_prompt=1,
157
- ip_adapter_negative_image=negative_ip_image,
158
- )
159
-
160
-
161
- prompt = "cinematic photo of a cyborg in the city, 4k, high quality, intricate, highly detailed"
162
- negative_prompt = "blurry, smooth, plastic"
163
-
164
- image = pipeline(
165
- prompt=prompt,
166
- negative_prompt=negative_prompt,
167
- ip_adapter_image_embeds=image_embeds,
168
- guidance_scale=6.0,
169
- num_inference_steps=25,
170
- generator=torch.Generator(device="cpu").manual_seed(1556265306),
171
- ).images[0]
172
-
173
- image.save("result.png")
174
- ```
175
-
176
- ### Asymmetric Tiling
177
- Stable Diffusion is not trained to generate seamless textures. However, you can use this simple script to add tiling to your generation. This script is contributed by [alexisrolland](https://github.com/alexisrolland). See more details in the [this issue](https://github.com/huggingface/diffusers/issues/556)
178
-
179
-
180
- |Generated|Tiled|
181
- |---|---|
182
- |![20240313003235_573631814](https://github.com/huggingface/diffusers/assets/5442875/eca174fb-06a4-464e-a3a7-00dbb024543e)|![wall](https://github.com/huggingface/diffusers/assets/5442875/b4aa774b-2a6a-4316-a8eb-8f30b5f4d024)|
183
-
184
-
185
- ```py
186
- import torch
187
- from typing import Optional
188
- from diffusers import StableDiffusionPipeline
189
- from diffusers.models.lora import LoRACompatibleConv
190
-
191
- def seamless_tiling(pipeline, x_axis, y_axis):
192
- def asymmetric_conv2d_convforward(self, input: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None):
193
- self.paddingX = (self._reversed_padding_repeated_twice[0], self._reversed_padding_repeated_twice[1], 0, 0)
194
- self.paddingY = (0, 0, self._reversed_padding_repeated_twice[2], self._reversed_padding_repeated_twice[3])
195
- working = torch.nn.functional.pad(input, self.paddingX, mode=x_mode)
196
- working = torch.nn.functional.pad(working, self.paddingY, mode=y_mode)
197
- return torch.nn.functional.conv2d(working, weight, bias, self.stride, torch.nn.modules.utils._pair(0), self.dilation, self.groups)
198
- x_mode = 'circular' if x_axis else 'constant'
199
- y_mode = 'circular' if y_axis else 'constant'
200
- targets = [pipeline.vae, pipeline.text_encoder, pipeline.unet]
201
- convolution_layers = []
202
- for target in targets:
203
- for module in target.modules():
204
- if isinstance(module, torch.nn.Conv2d):
205
- convolution_layers.append(module)
206
- for layer in convolution_layers:
207
- if isinstance(layer, LoRACompatibleConv) and layer.lora_layer is None:
208
- layer.lora_layer = lambda * x: 0
209
- layer._conv_forward = asymmetric_conv2d_convforward.__get__(layer, torch.nn.Conv2d)
210
- return pipeline
211
-
212
- pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True)
213
- pipeline.enable_model_cpu_offload()
214
- prompt = ["texture of a red brick wall"]
215
- seed = 123456
216
- generator = torch.Generator(device='cuda').manual_seed(seed)
217
-
218
- pipeline = seamless_tiling(pipeline=pipeline, x_axis=True, y_axis=True)
219
- image = pipeline(
220
- prompt=prompt,
221
- width=512,
222
- height=512,
223
- num_inference_steps=20,
224
- guidance_scale=7,
225
- num_images_per_prompt=1,
226
- generator=generator
227
- ).images[0]
228
- seamless_tiling(pipeline=pipeline, x_axis=False, y_axis=False)
229
-
230
- torch.cuda.empty_cache()
231
- image.save('image.png')
232
- ```