File size: 4,850 Bytes
a538510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d503ef
 
a538510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d503ef
a538510
 
 
 
 
 
 
 
4d503ef
 
 
 
 
 
 
 
 
 
 
 
a538510
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""SQUAD: The Stanford Question Answering Dataset."""
"""Modified version for fine tuning T5 on Question Generation """

import json

import datasets

# from datasets.tasks import QuestionAnsweringExtractive

logger = datasets.logging.get_logger(__name__)

_CITATION = """\
@article{2016arXiv160605250R,
       author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev},
                 Konstantin and {Liang}, Percy},
        title = "{SQuAD: 100,000+ Questions for Machine Comprehension of Text}",
      journal = {arXiv e-prints},
         year = 2016,
          eid = {arXiv:1606.05250},
        pages = {arXiv:1606.05250},
archivePrefix = {arXiv},
       eprint = {1606.05250},
}
"""

_DESCRIPTION = """\
Stanford Question Answering Dataset (SQuAD) is a reading comprehension \
dataset, consisting of questions posed by crowdworkers on a set of Wikipedia \
articles, where the answer to every question is a segment of text, or span, \
from the corresponding reading passage, or the question might be unanswerable.
"""

_URL = "https://rajpurkar.github.io/SQuAD-explorer/dataset/"
_URLS = {
    "train": _URL + "train-v1.1.json",
    "dev": _URL + "dev-v1.1.json",
    }


class SquadConfig(datasets.BuilderConfig):
    """BuilderConfig for SQUAD."""

    def __init__(self, **kwargs):
        """BuilderConfig for SQUAD.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(SquadConfig, self).__init__(**kwargs)


class Squad(datasets.GeneratorBasedBuilder):
    """SQUAD: The Stanford Question Answering Dataset. Version 1.1."""

    CONTEXT_PREFIX = 'gq: '
    QUESTIONS_SEP = ' Question: '
    BUILDER_CONFIGS = [
        SquadConfig(
                name="plain_text",
                version=datasets.Version("2.9.0", ""),
                description="Plain text",
                ),
        ]

    def _info(self):
        return datasets.DatasetInfo(
                description=_DESCRIPTION,
                features=datasets.Features(
                        {
                            "context": datasets.Value("string"),
                            "questions": datasets.Value("string"),
                            }
                        ),
                # No default supervised_keys (as we have to pass both question
                # and context as input).
                supervised_keys=None,
                homepage="https://rajpurkar.github.io/SQuAD-explorer/",
                citation=_CITATION,
                task_templates=[

                    ],
                )

    def _split_generators(self, dl_manager):
        downloaded_files = dl_manager.download_and_extract(_URLS)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
            ]


    def _generate_examples(self, filepath):
        """This function returns the examples in the raw (text) form."""
        logger.info("generating examples from = %s", filepath)
        key = 0
        with open(filepath, encoding="utf-8") as f:
            squad = json.load(f)
            for article in squad["data"]:
                for paragraph in article["paragraphs"]:
                    source_text = self.CONTEXT_PREFIX + paragraph['context'].strip()

                    # Get questions in order
                    qas = []
                    for qa in paragraph['qas']:
                        earliest_answer_start = min([answer['answer_start'] for answer in qa['answers']])
                        question = qa['question'].strip()
                        qas.append((earliest_answer_start, question))
                    sorted_qas = sorted(qas, key=lambda x: x[0])
                    only_qs = [qa[1] for qa in sorted_qas]
                    target_text = self.QUESTIONS_SEP + self.QUESTIONS_SEP.join(only_qs)
                    target_text = target_text.strip()
                    yield key, {
                        "context": source_text,
                        "questions": target_text}
                    key += 1