File size: 4,370 Bytes
a538510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a72533
a538510
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""SQUAD: The Stanford Question Answering Dataset."""
"""Modified version for fine tuning T5 on Question Generation """

import json

import datasets

# from datasets.tasks import QuestionAnsweringExtractive

logger = datasets.logging.get_logger(__name__)

_CITATION = """\
@article{2016arXiv160605250R,
       author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev},
                 Konstantin and {Liang}, Percy},
        title = "{SQuAD: 100,000+ Questions for Machine Comprehension of Text}",
      journal = {arXiv e-prints},
         year = 2016,
          eid = {arXiv:1606.05250},
        pages = {arXiv:1606.05250},
archivePrefix = {arXiv},
       eprint = {1606.05250},
}
"""

_DESCRIPTION = """\
Stanford Question Answering Dataset (SQuAD) is a reading comprehension \
dataset, consisting of questions posed by crowdworkers on a set of Wikipedia \
articles, where the answer to every question is a segment of text, or span, \
from the corresponding reading passage, or the question might be unanswerable.
"""

_URL = "https://rajpurkar.github.io/SQuAD-explorer/dataset/"
_URLS = {
    "train": _URL + "train-v1.1.json",
    "dev": _URL + "dev-v1.1.json",
    }


class SquadConfig(datasets.BuilderConfig):
    """BuilderConfig for SQUAD."""

    def __init__(self, **kwargs):
        """BuilderConfig for SQUAD.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(SquadConfig, self).__init__(**kwargs)


class Squad(datasets.GeneratorBasedBuilder):
    """SQUAD: The Stanford Question Answering Dataset. Version 1.1."""

    BUILDER_CONFIGS = [
        SquadConfig(
                name="plain_text",
                version=datasets.Version("2.9.0", ""),
                description="Plain text",
                ),
        ]

    def _info(self):
        return datasets.DatasetInfo(
                description=_DESCRIPTION,
                features=datasets.Features(
                        {
                            "context": datasets.Value("string"),
                            "questions": datasets.Value("string"),
                            }
                        ),
                # No default supervised_keys (as we have to pass both question
                # and context as input).
                supervised_keys=None,
                homepage="https://rajpurkar.github.io/SQuAD-explorer/",
                citation=_CITATION,
                task_templates=[

                    ],
                )

    def _split_generators(self, dl_manager):
        downloaded_files = dl_manager.download_and_extract(_URLS)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
            ]

    def _generate_examples(self, filepath):
        """This function returns the examples in the raw (text) form."""
        logger.info("generating examples from = %s", filepath)
        key = 0
        with open(filepath, encoding="utf-8") as f:
            squad = json.load(f)
            for article in squad["data"]:
                for paragraph in article["paragraphs"]:
                    source_text = f"generate questions: {paragraph['context'].strip()}"
                    questions = [qas['question'].strip() for qas in paragraph['qas']]
                    target_text = " {sep_token} ".join(questions)
                    target_text = f"{target_text}"
                    yield key, {
                        "context": source_text,
                        "questions": target_text}
                    key += 1