Datasets:
File size: 8,186 Bytes
4fea8d6 031b3a0 40dee3d b2e46ed 40dee3d c7caeb0 171091d 40dee3d c7caeb0 171091d 40dee3d c7caeb0 9fa9c94 171091d 40dee3d c7caeb0 171091d 031b3a0 171091d 031b3a0 9b0936f 031b3a0 e265c1c 8e6a5ef 031b3a0 171091d 031b3a0 e265c1c 031b3a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
---
license: cc-by-nc-sa-4.0
language: ja
tags:
- advertisement
task_categories:
- text2text-generation
- image-to-text
size_categories: 10K<n<100K
pretty_name: camera
dataset_info:
- config_name: with-lp-images
features:
- name: asset_id
dtype: int64
- name: kw
dtype: string
- name: lp_meta_description
dtype: string
- name: title_org
dtype: string
- name: title_ne1
dtype: string
- name: title_ne2
dtype: string
- name: title_ne3
dtype: string
- name: domain
dtype: string
- name: parsed_full_text_annotation
sequence:
- name: text
dtype: string
- name: xmax
dtype: int64
- name: xmin
dtype: int64
- name: ymax
dtype: int64
- name: ymin
dtype: int64
- name: lp_image
dtype: image
splits:
- name: test
num_bytes: 2528981570
num_examples: 872
- name: val
num_bytes: 13133740369.43
num_examples: 3098
- name: train
num_bytes: 51367983297.415
num_examples: 12395
download_size: 65867475365
dataset_size: 67030705236.845
- config_name: without-lp-images
features:
- name: asset_id
dtype: int64
- name: kw
dtype: string
- name: lp_meta_description
dtype: string
- name: title_org
dtype: string
- name: title_ne1
dtype: string
- name: title_ne2
dtype: string
- name: title_ne3
dtype: string
- name: domain
dtype: string
- name: parsed_full_text_annotation
sequence:
- name: text
dtype: string
- name: xmax
dtype: int64
- name: xmin
dtype: int64
- name: ymax
dtype: int64
- name: ymin
dtype: int64
splits:
- name: test
num_bytes: 14634833
num_examples: 872
- name: val
num_bytes: 69170878
num_examples: 3098
- name: train
num_bytes: 280633510
num_examples: 12395
download_size: 150489014
dataset_size: 364439221
configs:
- config_name: with-lp-images
data_files:
- split: test
path: with-lp-images/test-*
- split: val
path: with-lp-images/validation-*
- split: train
path: with-lp-images/train-*
default: true
- config_name: without-lp-images
data_files:
- split: test
path: without-lp-images/test-*
- split: val
path: without-lp-images/validation-*
- split: train
path: without-lp-images/train-*
---
# Dataset Card for CAMERA📷:
## Table of Contents:
- [Dataset Card for Camera](#dataset-card-for-camera)
- [Table of Contents](#table-of-contents)
- [Dataset Details](#dataset-details)
- [Dataset Description](#dataset-description)
- [Dataset Sources](#dataset-sources)
- [Uses](#uses)
- [Direct Use](#direct-use)
- [Dataset Information](#datasest-information)
- [Data Example](#data-example)
- [Dataset Structure](#dataset-structure)
- [Citation](#citation)
## Dataset Details
### Dataset Description
CAMERA (CyberAgent Multimodal Evaluation for Ad Text GeneRAtion) is the Japanese ad text generation dataset, which comprises actual data sourced from Japanese search ads and incorporates annotations encompassing multi-modal information such as the LP images.
### Dataset Sources
- **Homepage:** [Github](https://github.com/CyberAgentAILab/camera)
- **Paper:** [Striking Gold in Advertising: Standardization and Exploration of Ad Text
Generation](https://aclanthology.org/2024.acl-long.54/)
- [NEW!] Our paper has been accepted to [ACL2024](https://2024.aclweb.org/), and we will update the paper information as soon as the proceedings are published.
## Uses
### Direct Use
- Dataset with lp images (with-lp-images)
```python
import datasets
dataset = datasets.load_dataset("cyberagent/camera", name="with-lp-images")
```
- Dataset without lp images (without-lp-images)
```python
import datasets
dataset = datasets.load_dataset("cyberagent/camera", name="without-lp-images")
```
### Dataset Information
- with-lp-images
```
DatasetDict({
train: Dataset({
features: ['asset_id', 'kw', 'lp_meta_description', 'title_org', 'title_ne1', 'title_ne2', 'title_ne3', 'domain', 'parsed_full_text_annotation', 'lp_image'],
num_rows: 12395
})
validation: Dataset({
features: ['asset_id', 'kw', 'lp_meta_description', 'title_org', 'title_ne1', 'title_ne2', 'title_ne3', 'domain', 'parsed_full_text_annotation', 'lp_image'],
num_rows: 3098
})
test: Dataset({
features: ['asset_id', 'kw', 'lp_meta_description', 'title_org', 'title_ne1', 'title_ne2', 'title_ne3', 'domain', 'parsed_full_text_annotation', 'lp_image'],
num_rows: 872
})
})
```
- without-lp-images
```
DatasetDict({
train: Dataset({
features: ['asset_id', 'kw', 'lp_meta_description', 'title_org', 'title_ne1', 'title_ne2', 'title_ne3', 'domain', 'parsed_full_text_annotation'],
num_rows: 12395
})
validation: Dataset({
features: ['asset_id', 'kw', 'lp_meta_description', 'title_org', 'title_ne1', 'title_ne2', 'title_ne3', 'domain', 'parsed_full_text_annotation'],
num_rows: 3098
})
test: Dataset({
features: ['asset_id', 'kw', 'lp_meta_description', 'title_org', 'title_ne1', 'title_ne2', 'title_ne3', 'domain', 'parsed_full_text_annotation'],
num_rows: 872
})
})
```
### Data Example
```
{'asset_id': 6041,
'kw': 'GLLARE MARUYAMA',
'lp_meta_description': '美容サロン ブルーヘアー 札幌市 西区 琴似 創業34年 かゆみ、かぶれを防ぎ、美しい髪へ',
'title_org': '北海道、水の教会で結婚式',
'title_ne1': '',
'title_ne2': '',
'title_ne3': '',
'domain': '',
'parsed_full_text_annotation': {
'text': ['表参道',
'名古屋',
'梅田',
...
'成約者様専用ページ',
'個人情報保護方針',
'星野リゾートトマム'],
'xmax': [163,
162,
157,
...
1047,
1035,
1138],
'xmin': [125,
125,
129,
...
937,
936,
1027],
'ymax': [9652,
9791,
9928,
...
17119,
17154,
17515],
'ymin': [9642,
9781,
9918,
...
17110,
17143,
17458]},
'lp_image': <PIL.PngImagePlugin.PngImageFile image mode=RGBA size=1200x17596>}
```
### Dataset Structure
| Name | Description |
| ---- | ---- |
| asset_id | ids (associated with LP images) |
| kw | search keyword |
| lp_meta_description | meta description extracted from LP (i.e., LP Text)|
| title_org | ad text (original gold reference) |
| title_ne{1-3} | ad text (additonal gold references for multi-reference evaluation |
| domain | industry domain (HR, EC, Fin, Edu) for industry-wise evaluation |
| parsed_full_text_annotation | OCR result for LP image |
| lp_image | LP image |
## Citation
```
@inproceedings{mita-etal-2024-striking,
title = "Striking Gold in Advertising: Standardization and Exploration of Ad Text Generation",
author = "Mita, Masato and
Murakami, Soichiro and
Kato, Akihiko and
Zhang, Peinan",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand and virtual meeting",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.acl-long.54",
pages = "955--972",
abstract = "In response to the limitations of manual ad creation, significant research has been conducted in the field of automatic ad text generation (ATG). However, the lack of comprehensive benchmarks and well-defined problem sets has made comparing different methods challenging. To tackle these challenges, we standardize the task of ATG and propose a first benchmark dataset, CAMERA, carefully designed and enabling the utilization of multi-modal information and facilitating industry-wise evaluations. Our extensive experiments with a variety of nine baselines, from classical methods to state-of-the-art models including large language models (LLMs), show the current state and the remaining challenges. We also explore how existing metrics in ATG and an LLM-based evaluator align with human evaluations.",
}
``` |