File size: 8,186 Bytes
4fea8d6
031b3a0
 
 
 
 
 
 
 
 
40dee3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2e46ed
40dee3d
c7caeb0
171091d
 
 
 
 
40dee3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7caeb0
171091d
 
 
 
 
40dee3d
 
 
 
 
 
 
c7caeb0
9fa9c94
171091d
 
40dee3d
 
 
 
 
c7caeb0
171091d
 
 
 
031b3a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171091d
031b3a0
 
 
 
9b0936f
031b3a0
 
 
 
 
e265c1c
8e6a5ef
031b3a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171091d
031b3a0
 
 
 
 
 
 
 
 
 
 
 
 
e265c1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
031b3a0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
---
license: cc-by-nc-sa-4.0
language: ja
tags:
- advertisement
task_categories:
- text2text-generation
- image-to-text
size_categories: 10K<n<100K
pretty_name: camera
dataset_info:
- config_name: with-lp-images
  features:
  - name: asset_id
    dtype: int64
  - name: kw
    dtype: string
  - name: lp_meta_description
    dtype: string
  - name: title_org
    dtype: string
  - name: title_ne1
    dtype: string
  - name: title_ne2
    dtype: string
  - name: title_ne3
    dtype: string
  - name: domain
    dtype: string
  - name: parsed_full_text_annotation
    sequence:
    - name: text
      dtype: string
    - name: xmax
      dtype: int64
    - name: xmin
      dtype: int64
    - name: ymax
      dtype: int64
    - name: ymin
      dtype: int64
  - name: lp_image
    dtype: image
  splits:
  - name: test
    num_bytes: 2528981570
    num_examples: 872
  - name: val
    num_bytes: 13133740369.43
    num_examples: 3098
  - name: train
    num_bytes: 51367983297.415
    num_examples: 12395
  download_size: 65867475365
  dataset_size: 67030705236.845
- config_name: without-lp-images
  features:
  - name: asset_id
    dtype: int64
  - name: kw
    dtype: string
  - name: lp_meta_description
    dtype: string
  - name: title_org
    dtype: string
  - name: title_ne1
    dtype: string
  - name: title_ne2
    dtype: string
  - name: title_ne3
    dtype: string
  - name: domain
    dtype: string
  - name: parsed_full_text_annotation
    sequence:
    - name: text
      dtype: string
    - name: xmax
      dtype: int64
    - name: xmin
      dtype: int64
    - name: ymax
      dtype: int64
    - name: ymin
      dtype: int64
  splits:
  - name: test
    num_bytes: 14634833
    num_examples: 872
  - name: val
    num_bytes: 69170878
    num_examples: 3098
  - name: train
    num_bytes: 280633510
    num_examples: 12395
  download_size: 150489014
  dataset_size: 364439221
configs:
- config_name: with-lp-images
  data_files:
  - split: test
    path: with-lp-images/test-*
  - split: val
    path: with-lp-images/validation-*
  - split: train
    path: with-lp-images/train-*
  default: true
- config_name: without-lp-images
  data_files:
  - split: test
    path: without-lp-images/test-*
  - split: val
    path: without-lp-images/validation-*
  - split: train
    path: without-lp-images/train-*

---

# Dataset Card for CAMERA📷:

## Table of Contents:
- [Dataset Card for Camera](#dataset-card-for-camera)
  - [Table of Contents](#table-of-contents)
  - [Dataset Details](#dataset-details)
    - [Dataset Description](#dataset-description)
    - [Dataset Sources](#dataset-sources)
  - [Uses](#uses)
    - [Direct Use](#direct-use)
    - [Dataset Information](#datasest-information)
    - [Data Example](#data-example)
    - [Dataset Structure](#dataset-structure)
  - [Citation](#citation)


## Dataset Details

### Dataset Description
CAMERA (CyberAgent Multimodal Evaluation for Ad Text GeneRAtion) is the Japanese ad text generation dataset, which comprises actual data sourced from Japanese search ads and incorporates annotations encompassing multi-modal information such as the LP images.

### Dataset Sources

- **Homepage:** [Github](https://github.com/CyberAgentAILab/camera)
- **Paper:** [Striking Gold in Advertising: Standardization and Exploration of Ad Text
Generation](https://aclanthology.org/2024.acl-long.54/)
  - [NEW!] Our paper has been accepted to [ACL2024](https://2024.aclweb.org/), and we will update the paper information as soon as the proceedings are published.

## Uses

### Direct Use

- Dataset with lp images (with-lp-images)
```python
import datasets
dataset = datasets.load_dataset("cyberagent/camera", name="with-lp-images")
```

- Dataset without lp images (without-lp-images)
```python
import datasets
dataset = datasets.load_dataset("cyberagent/camera", name="without-lp-images")
```

### Dataset Information

- with-lp-images
```
DatasetDict({
    train: Dataset({
        features: ['asset_id', 'kw', 'lp_meta_description', 'title_org', 'title_ne1', 'title_ne2', 'title_ne3', 'domain', 'parsed_full_text_annotation', 'lp_image'],
        num_rows: 12395
    })
    validation: Dataset({
        features: ['asset_id', 'kw', 'lp_meta_description', 'title_org', 'title_ne1', 'title_ne2', 'title_ne3', 'domain', 'parsed_full_text_annotation', 'lp_image'],
        num_rows: 3098
    })
    test: Dataset({
        features: ['asset_id', 'kw', 'lp_meta_description', 'title_org', 'title_ne1', 'title_ne2', 'title_ne3', 'domain', 'parsed_full_text_annotation', 'lp_image'],
        num_rows: 872
    })
})
```

- without-lp-images
```
DatasetDict({
    train: Dataset({
        features: ['asset_id', 'kw', 'lp_meta_description', 'title_org', 'title_ne1', 'title_ne2', 'title_ne3', 'domain', 'parsed_full_text_annotation'],
        num_rows: 12395
    })
    validation: Dataset({
        features: ['asset_id', 'kw', 'lp_meta_description', 'title_org', 'title_ne1', 'title_ne2', 'title_ne3', 'domain', 'parsed_full_text_annotation'],
        num_rows: 3098
    })
    test: Dataset({
        features: ['asset_id', 'kw', 'lp_meta_description', 'title_org', 'title_ne1', 'title_ne2', 'title_ne3', 'domain', 'parsed_full_text_annotation'],
        num_rows: 872
    })
})
```

### Data Example

```
{'asset_id': 6041,
 'kw': 'GLLARE MARUYAMA',
 'lp_meta_description': '美容サロン ブルーヘアー 札幌市 西区 琴似 創業34年 かゆみ、かぶれを防ぎ、美しい髪へ',
 'title_org': '北海道、水の教会で結婚式',
 'title_ne1': '',
 'title_ne2': '',
 'title_ne3': '',
 'domain': '',
 'parsed_full_text_annotation': {
  'text': ['表参道',
   '名古屋',
   '梅田',
    ...
   '成約者様専用ページ',
   '個人情報保護方針',
   '星野リゾートトマム'],
  'xmax': [163,
   162,
   157,
    ...
   1047,
   1035,
   1138],
  'xmin': [125,
   125,
   129,
    ...
   937,
   936,
   1027],
  'ymax': [9652,
   9791,
   9928,
    ...
   17119,
   17154,
   17515],
  'ymin': [9642,
   9781,
   9918,
    ...
   17110,
   17143,
   17458]},
 'lp_image': <PIL.PngImagePlugin.PngImageFile image mode=RGBA size=1200x17596>}
```

### Dataset Structure

| Name | Description |
| ---- | ---- |
| asset_id | ids (associated with LP images) |
| kw | search keyword |
| lp_meta_description | meta description extracted from LP (i.e., LP Text)|
| title_org  |  ad text (original gold reference) |
| title_ne{1-3}  |  ad text (additonal gold references for multi-reference evaluation |
| domain |  industry domain (HR, EC, Fin, Edu) for industry-wise evaluation |
| parsed_full_text_annotation | OCR result for LP image |
| lp_image | LP image |

## Citation

```
@inproceedings{mita-etal-2024-striking,
    title = "Striking Gold in Advertising: Standardization and Exploration of Ad Text Generation",
    author = "Mita, Masato  and
      Murakami, Soichiro  and
      Kato, Akihiko  and
      Zhang, Peinan",
    editor = "Ku, Lun-Wei  and
      Martins, Andre  and
      Srikumar, Vivek",
    booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
    month = aug,
    year = "2024",
    address = "Bangkok, Thailand and virtual meeting",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2024.acl-long.54",
    pages = "955--972",
    abstract = "In response to the limitations of manual ad creation, significant research has been conducted in the field of automatic ad text generation (ATG). However, the lack of comprehensive benchmarks and well-defined problem sets has made comparing different methods challenging. To tackle these challenges, we standardize the task of ATG and propose a first benchmark dataset, CAMERA, carefully designed and enabling the utilization of multi-modal information and facilitating industry-wise evaluations. Our extensive experiments with a variety of nine baselines, from classical methods to state-of-the-art models including large language models (LLMs), show the current state and the remaining challenges. We also explore how existing metrics in ATG and an LLM-based evaluator align with human evaluations.",
}
```